Лекция 20

Электрохимическая термодинамика и кинетика

План лекции

- 1. Уравнение Нернста для Ох /Red систем.
- 2. Металлические и газовые электроды.
- 3. Кинетика электродных процессов.

Уравнение Нернста для Ox /Red систем

(Расчет потенциала для нестандартных состояний).

В общем случае для потенциалопределяющей реакции: $Ox + ne \Leftrightarrow Red$:

$$E_{Ox/Red}^{p} = E_{Ox/Red}^{0} + \frac{RT}{nF} \ln \frac{a_{Ox}}{a_{Red}}$$

R – универсальная газовая постоянная, 8,31Дж/моль K;

n – число электронов, принимающих участие в реакции

F – число Фарадея, \approx 96500 Кл/моль (96484 Кл);

T – температура, К.

При расчетах обычно принимают $a_i \approx c_i$.

Уравнение Нернста для металлических электродов:

Потенциалопределяющая реакция: $\mathbf{M}_{(\mathbf{p}-\mathbf{p})}^{\mathbf{n}+} + n\mathbf{e} \iff \mathbf{M}_{(\mathbf{r})}$

$$E_{M^{n+}/M}^{p} = E_{M^{n+}/M}^{0} + \frac{RT}{nF} \ln a_{M^{n+}}$$
; $a_{M} = \text{const} = 1$

Для T = 298 K и переходя к десятичному логарифму:

$$E_{Mn^{+}/M}^{p} = E_{Mn^{+}/M}^{0} + \frac{0.059}{n} \lg a_{Mn^{+}}$$

Уравнение Нернста для водородного электрода

Потенциалопределяющая реакция: $2H^+ + 2e \rightleftharpoons H_2$

$$E_{H^+/H_2}^p = E_{H^+/H_2}^0 + \frac{RT}{2F} \ln \frac{a^2_{H^+}}{\overline{p}_{H_2}}$$

Т.к.
$$E_{H^+/H_2}^0 = 0$$
, $pH = -\lg a_{_{H^+}}$, для $T = 298$ К имеем:

$$E_{H^+/H_2}^{\ p} = -0.0295 \cdot \lg \ \overline{p}_{H_2} - 0.059 \, pH$$
 Если $\overline{p}_{H_2} = 1 \implies E_{H^+/H_2}^{\ p} = -0.059 \, pH$

Уравнение Нернста для кислородного электрода.

Потенциалопределяющая реакция:

$$O_2 + 4\overline{e} + 2H_2O \stackrel{\rightarrow}{\leftarrow} 4OH^-$$

$$E_{O_2/OH^-}^p = 1,23 + 0,0147 \cdot \lg p_{O_2} - 0,059 \cdot pH$$

$$T.\kappa.$$
 $E_{O_2/OH^-}^o = 0.401\,\mathrm{B}$, $T = 298\,\mathrm{K}$, $pH = 14 - pOH = 14 + \lg a_{OH^-}$

$$E_{O_2/OH^-}^p = E_{O_2/OH^-}^o + \frac{RT}{4F} \ln \frac{\overline{p}_{O_2} \cdot a^2_{H_2O}}{a^4_{OH^-}}$$

Если
$$\bar{p}_{O_2} = 1 \implies$$

$$E_{O_2/OH^-}^p = 1,23 - 0,059 \cdot pH$$

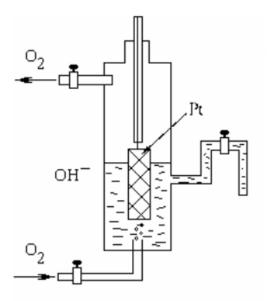
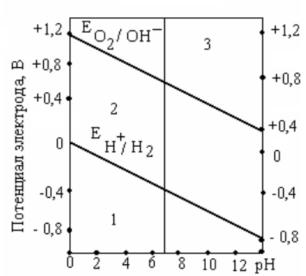
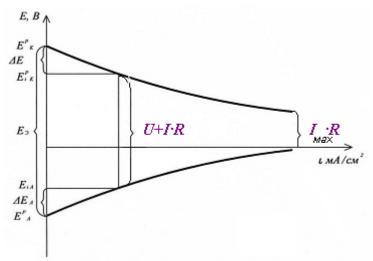



Схема кислородного электрода

Зависимость потенциала водородного и кислородного электродов от рН (диаграмма Пурбэ)

Кинетика электродных процессов

Поляризация ΔE - отклонение потенциала электрода под током от его равновесного значения


$$\Delta E = E^i - E^p$$
 $\Delta E_A = E_A{}^i - E_A{}^p$ - анодная поляризация $\Delta E_K = E_K{}^i - E_K{}^p$ - катодная поляризация

Из закона Фарадея \Rightarrow ток (*I*) пропорционален количеству вещества, прореагировавшему на электродах в единицу времени:

$$\frac{m}{M \cdot t} = \frac{I}{nF}$$

Плотность тока i = I/S пропорциональна количеству вещества, прореагировавшему на электродах в единицу времени на единице поверхности, т.е. *скорости электрохимической реакции*.

Строят график зависимости E = f(i) — поляризационные кривые

При прохождении электрического тока:

E анода \Rightarrow более положительным, $\Rightarrow \Delta E_A > 0$

E катода \Rightarrow более отрицательным $\Rightarrow \Delta E_{K} < 0$

Для получения **большего** тока (то есть большей скорости) \Rightarrow большее отклонение от равновесного значения \Rightarrow большее значение поляризации

Чем
$$\Delta E \Rightarrow I \Rightarrow$$
 скорость.

Напряжение на электродах в *работающем* ГЭ:

$$U = E_{\mathfrak{I}} - I(r_1 + r_2) - \left| \Delta E_{\kappa} \right| - \Delta E_{A}$$

U – напряжение ГЭ; $E_{\mathfrak{I}}$ – ЭДС ГЭ;

 $I(r_1 + r_2)$ - омическое падение напряжения;

 r_1 - сопротивление в проводниках с электронной проводимостью (проводники первого рода) - мало;

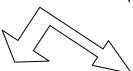
 r_2 - сопротивление в электролите (проводник второго рода).

С ростом I и ΔE напряжение U - уменьшается.

Цель \Rightarrow увеличение U при сохранении $I \Rightarrow$ для этого необходимо:

- 1) увеличивать ЭДС;
- 2) снижать поляризацию;
- 3) снижать омические потери, для чего: увеличить i, уменьшить r_1 и r_2 за счет увеличения S (площади поверхности электродов), расстояния между электродами l, использовать добавки увеличивающие электропроводность и снижающие удельное сопротивление электролита ρ :

$$i=I/S$$
; $r = \rho^{r}l/S$


Природа поляризации

Обязательные стадии гетерогенной электрохимической реакции:

- стадии массопереноса (подвод реагентов к поверхности электрода, отвод продуктов реакции от электрода);
- стадия переноса электронов через границу раздела.

Скорость всей реакции лимитируется (определяется) самой медленной стадией (лимитирующей).

ПОЛЯРИЗАЦИЯ

Концентрационная:

возникает вследствие замедленной стадии массопереноса (потенциал электрода определяется поверхностной концентрацией)

Электрохимическая:

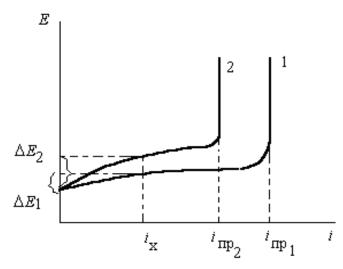
обусловлена замедленностью собственно электрохимической реакции

Концентрационная поляризация $\Delta E_{\text{конц}}$: (разряд ионов металлов, восстановление молекулярного кислорода, анодное окисление металлов, окисление ионов галогенов)

$$\Delta E_{\text{\tiny KOHU}} = \frac{RT}{nF} \ln \frac{a_s}{a_s} \approx \frac{RT}{nF} \ln \frac{c_s}{c_s}$$

 $a_{S,} a_{V}$ – активности ионов у поверхности электрода (S) и в объеме раствора (V) Если концентрация подводимого к поверхности реагента c_{S}

(и активности a_S) падают до нуля (то есть все частицы быстро разряжаются), наблюдается предельный диффузионный ток:


$$\Delta E_{_{\text{KOHU}}} = \frac{RT}{nF} \ln(1 - \frac{i}{i_{_{nped}}})$$
 $i_{_{nped}} = nFc_V D / \delta$

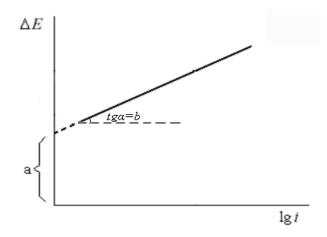
D – коэффициент диффузии реагента

 δ - толщина диффузного слоя (в котором концентрация реагента меняется от c_V до c_S)

Уменьшение
$$\Delta E_{\text{конц}}$$
:

1) \uparrow D (увеличение T); 2) \uparrow c_V ; 3) $\delta \downarrow$ (перемешивание)

Электрохимическая поляризация $\Delta E_{\text{элхим}}$ (перенапряжение) (катодное восстановление H^+ , H_2O , молекулярного кисорода)


Уравнение Тафеля

$$\Delta E_{\scriptscriptstyle {\rm ЭЛ/X}} = a + elgi$$

а, в -зависят от природы реакции, природы электродов, температуры

Константы в уравнении Тафеля (В) для реакции *катодного* выделения водорода на металлах при 298 К

	Константы в растворах					Константы в растворах			
Металл	кислотных		Щелочных		Металл	Кислотных		Щелочных	
	а	b	а	b		а	b	а	b
Pt	0,10	0,03	0,31	0,10	Ag	0,95	0,10	0,73	0,12
Pd	0,24	0,03	0,53	0,13	Sn	1,20	0,13	1,28	0,23
Co	0,62	0,14	0,60	0,14	Zn	1,24	0,12	1,20	0,12
Ni	0,63	0,10	0,65	0,10	Cd	1,40	0,18	1,05	0,16
Fe	0,70	0,12	0,76	0,11	Hg	1,41	0,11	1,54	0,11
Cu	0,86	0,12	0,96	0,12	Pb	1,56	0,11	1,36	0,25

Зависимость электрохимической поляризации электродов от lg i

 $\Delta E_{\scriptscriptstyle {\rm ЭЛ/X}}$ уменьшается, если:

- 1) $\uparrow c_{\text{реагентов}}$
- 2) температуру
- 3) использовать электроды-катализаторы
- 4) $\uparrow S_{\text{электродов}}$