Частное профессиональное образовательное учреждение «СЕВЕРО-КАВКАЗСКИЙ КОЛЛЕДЖ ИННОВАЦИОННЫХ ТЕХНОЛОГИЙ»

Рассмотрена и утверждена на заседании Педагогического совета протокол от « // » сентября Директор ЧПОУ «СКЛЕИТ» 201∫г.

25 Я.Е. Пазарова «СУм сентября 201

ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ЭЛЕКТРОТЕХНИКА

13.01.10 ЭЛЕКТРОМОНТЕР ПО РЕМОНТУ И ОБСЛУЖИВАНИЮ ЭЛЕКТРООБОРУДОВАНИЯ (ПО ОТРАСЛЯМ)

Рабочая программа по дисциплине «Электротехника» составлена на основании Федерального государственного образовательного стандарта среднего профессионального образования по специальности: 13.01.10 Электромонтер по ремонту и обслуживанию электрооборудования (по отраслям), утвержденного Министерством образования и науки РФ от 02 августа 2013 г., № 802, зарегистрированного в Минюсте РФ 20 августа 2013 г. № 29611; укрупненная группа специальности 13.00.00 Электро-и теплоэнергетика.

Организация-разработчик: Частное профессиональное «Северо-Кавказский колледж инновационных технологий»	•	учреждение
Разработчик: Белан Н.Н. , преподаватель ЧПОУ «СККИТ»		
Рекомендована Педагогическим советом № 01 от «»	201	Γ.
Рецензент: Канцедалов Виктор Григорьевич , директор 1	НПП «Прочность»	, доктор тех-

Рецензент: **Канцедалов Виктор Григорьевич**, директор НПП «Прочность», доктор технических наук, профессор

СОДЕРЖАНИЕ

1.	ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛ	ИНЫ	4
2.	СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	· · · · · · · · · · · · · · · · · · ·	6
3.	УСЛОВИЯ РЕАЛИЗАЦИИ	УЧЕБНОЙ	
	дисциплины		15
4.	КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ	УЧЕБНОЙ	
	ДИСЦИПЛИНЫ		17
5	ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ЛИСШИПЛИНЫ		

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

Электротехника

название дисциплины

1.1. Область применения программы

Рабочая программа учебной дисциплины является частью основной профессиональной образовательной программы в соответствии с ФГОС по профессии 13.01.10 Электромонтер по ремонту и обслуживанию электрооборудования (по отраслям); квалификация Электромонтер по ремонту и обслуживанию электрооборудования.

1.2. Место дисциплины в структуре основной профессиональной образовательной программы: учебная дисциплина «Электротехника» входит в общепрофессиональный учебный пикл ОП.02.

1.3. Цели и задачи дисциплины – требования к результатам освоения дисциплины

Цель: создание условий для изучения основных законов электромагнетизма, расчета и анализа электрических и магнитных цепей, а также явлений, которые сопровождают процессы в технических системах.

Задачи:

- формирование у студентов минимально необходимых знаний основных электротехнических законов и методов анализа электрических цепей;
- формирование умений на основе паспортных и каталожных данных определять параметры и характеристики типовых устройств, использовать современные вычислительные средства для анализа состояния и управления устройствами и системами.

В результате освоения дисциплины обучающийся должен:

уметь:

- контролировать выполнение заземления, зануления;
- производить контроль параметров работы электрооборудования;
- пускать и останавливать электродвигатели, установленные на эксплуатируемом оборудовании;
- рассчитывать параметры, составлять и собирать схемы включения приборов при измерении различных электрических величин, электрических машин и механизмов;
- снимать показания работы и пользоваться электрооборудованием с соблюдением норм техники безопасности и правил эксплуатации;
 - читать принципиальные, электрические и монтажные схемы;
- проводить сращивание, спайку и изоляцию проводов и контролировать качество выполняемых работ;

знать:

- основные понятия о постоянном и переменном электрическом токе, последовательное и параллельное соединение проводников и источников тока, единицы измерения силы тока, напряжения, мощности электрического тока, сопротивления проводников, электрических и магнитных полей;
- сущность и методы измерений электрических величин, конструктивные и технические характеристики измерительных приборов;
 - типы и правила графического изображения и составления электрических схем;
 - условные обозначения электротехнических приборов и электрических машин;
- основные элементы электрических сетей; принципы действия, устройство, основные характеристики электроизмерительных приборов, электрических машин, аппаратуры управления и защиты, схемы электроснабжения;
- двигатели постоянного и переменного тока, их устройство, принципы действия, правила пуска, остановки;

- способы экономии электроэнергии;
- правила сращивания, спайки и изоляции проводов;
- виды и свойства электротехнических материалов;
- правила техники безопасности при работе с электрическими приборами.

В результате освоения дисциплины обучающийся должен обладать общими и профессиональными компетенциями, включающие в себя способность:

- OК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- ОК 2. Организовывать собственную деятельность, исходя из цели и способов ее достижения, определенных руководителем.
- ОК 3. Анализировать рабочую ситуацию, осуществлять текущий и итоговый контроль, оценку и коррекцию собственной деятельности, нести ответственность за результаты своей работы.
- OК 4. Осуществлять поиск информации, необходимой для эффективного выполнения профессиональных задач.
- OК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- OK 6. Работать в команде, эффективно общаться с коллегами, руководством, клиентами.
- ОК 7. Исполнять воинскую обязанность, в том числе с применением полученных профессиональных знаний (для юношей).
- ПК 1.1. Выполнять слесарную обработку, пригонку и пайку деталей и узлов различной сложности в процессе сборки.
 - ПК 1.2. Изготовлять приспособления для сборки и ремонта.
- ПК 1.3. Выявлять и устранять дефекты во время эксплуатации оборудования и при проверке его в процессе ремонта.
 - ПК 1.4. Составлять дефектные ведомости на ремонт электрооборудования.
- ПК 2.1. Принимать в эксплуатацию отремонтированное электрооборудование и включать его в работу.
- ПК 2.2. Производить испытания и пробный пуск машин под наблюдением инженерно-технического персонала.
- ПК 2.3. Настраивать и регулировать контрольно-измерительные приборы и инструменты.
 - ПК 3.1. Проводить плановые и внеочередные осмотры электрооборудования.
- ПК 3.2. Производить техническое обслуживание электрооборудования согласно технологическим картам.
- ПК 3.3. Выполнять замену электрооборудования, не подлежащего ремонту, в случае обнаружения его неисправностей.

1.4. Рекомендуемое количество часов на освоение программы учебной дисциплины: Для очной формы обучения:

максимальной учебной нагрузки обучающегося 45 часов, в том числе:

обязательной аудиторной учебной нагрузки обучающегося 30 часов;

самостоятельной работы обучающегося 15 часов.

Для очно-заочной формы обучения:

максимальной учебной нагрузки обучающегося 60 часов, в том числе: обязательной аудиторной учебной нагрузки обучающегося 40 часов; самостоятельной работы обучающегося 20 часов.

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1 Объем учебной дисциплины и виды учебной работы (очная форма)

Вид учебной работы	Объем часов
Максимальная учебная нагрузка (всего)	45
Обязательная аудиторная учебная нагрузка (всего)	30
в том числе:	
лекционные занятия	10
Практические (лабораторные) работы	20
Самостоятельная работа студента (всего)	15
в том числе:	
самостоятельная работа над курсовой работой (проектом) (если предусмотрено)	-
Составление конспекта лекции	3
Подготовка докладов по указанным темам	3
Составление кроссворда	3
Подготовка презентаций	3
Работа в сети Интернет	3
Промежуточная аттестация в форме дифференцированного зачета	

2.1 Объем учебной дисциплины и виды учебной работы (очно-заочная форма)

Вид учебной работы	Объем часов
Максимальная учебная нагрузка (всего)	60
Обязательная аудиторная учебная нагрузка (всего)	40
в том числе:	
лекционные занятия	20
Практические (лабораторные) работы	20
Самостоятельная работа студента (всего)	20
в том числе:	
Составление конспекта лекции	-
Подготовка докладов по указанным темам	5
Составление кроссворда	5
Подготовка презентаций	5
Работа в сети Интернет	5

2.2 Тематический план и содержание учебной дисциплины Электротехника

Наименование разде- лов и тем	Содержание учебного материала, лабораторные работы и практические занятия, самостоятельная работа студентов, курсовая работа (проект)	Реализация компетенций	Объем часов очная форма обучения	Объем часов заочная форма обучения	Уровень освоения
1	2			3	
Раздел 1. Электрические	Раздел 1. Электрические и магнитные цепи				
Тема 1.1.	Содержание учебного материала:	OK 1 - 7	1	1	1
Электрические цепи	Введение. Предмет и содержание курса;	ПК 1.1 - 3.3			
постоянного тока	роль электрической энергии в жизни современного общества; значение и место				
	курса «Электротехника» в подготовке ква- лифицированных рабочих по профессии				
	«Электромонтер по ремонту и обслуживанию электрооборудования».				
	Классификация материалов на основе элек-				
	трических свойств и их общая характери-				
	стика.				
	Характеристика цепей постоянного тока.				
	Понятие электрической цепи постоянного				
	тока, ее основные элементы. Понятие элек-				
	трического тока, напряжения, сопротивле-				
	ния. Обозначение, единицы измерения,				
	Правила графического изображения и				
	сборки электрически цепей. Способы со-				
	единения сопротивлений. Работа, мощность				
	электрического тока. Законы Ома и				
	Кирхгофа.				
	Практические (лабораторные) работы:		1	1	2
	1. Исследование электрического контакта				
	произведенного пайкой.				
	2. Исследование цепей постоянного тока				
	при различных способах соединения при-				

	емников электрической энергии.				
	Решение расчетных задач по теме: «Элек-				
	трические цепи постоянного тока».				
	Самостоятельная работа:		2	1	3
	1. Работа над конспектом лекции.				
	2. Составление кроссвордов по теме				
	«Электрические цепи постоянного тока».				
	3. Подготовка сообщений «Электрический				
	ток в различных средах».				
	Предварительная подготовка материала,				
	поиск информации в Интернете о резисто-				
	рах и реостатах.				
Тема 1.2.	Содержание учебного материала:	OK 1 - 6	1	1	1
Магнитные цепи.	Магнитные цепи. Понятие, основные ха-	ПК 1.1 - 3.3	_	_	_
Электромагнетизм	рактеристики магнитного поля. Магнитные				
gvicin positivi inci inci inci	свойства веществ. Характеристики магнит-				
	ных материалов. Классификация, элементы				
	и характеристики магнитных цепей. Закон				
	полного тока.				
	Электромагнитная индукция. Закон элек-				
	тромагнитной индукции, ЭДС индукции,				
	ЭДС самоиндукции, ЭДС взаимоиндукции,				
	вихревые токи.		1	1	2
	Практические (лабораторные) работы:		1	1	2
	1. Исследование явления электромагнитной				
	индукции и самоиндукции.				
	2. Решение задач по теме «Магнитные це-				
	пи».				
	Самостоятельная работа:		1	1	3
	1. Работа над конспектом лекции.				
	2. Предварительная подготовка материала,				
	поиск информации в интернете о ферро-				
	магнетиках и парамагнетиках.				
Тема 1.3.	Содержание учебного материала:	ОК 1 - 6	2	5	1
Электрические цепи	Электрические цепи однофазного пере-	ПК 1.1 - 3.3			

переменного тока	менного тока. Понятие, получение и пара-				
переменного тока	метры переменного тока. Фазы переменно-				
	го тока и сдвиг фаз. Активное, индуктив-				
	ное, емкостное и полное сопротивление це-				
	пи переменного тока. Резонансные режимы				
	работы цепи. Виды мощностей и коэффи-				
	циент мощности цепи переменного тока.				
	Электрические цепи трехфазного пере-				
	менного тока. Понятие и принцип получе-				
	ния трехфазной ЭДС. Схемы соединения				
	трехфазных цепей, назначение нулевого				
	провода, соотношения междуфазного и ли-				
	нейного напряжения и токов. Виды мощно-				
	стей и коэффициент мощности цепи трех-				
	фазного тока.				
	Практические (лабораторные) работы:		4	3	2
	1. Исследование различных соединений ак-		_	_	_
	тивного, индуктивного и емкостного сопро-				
	тивлений, получение режима резонанса.				
	2. Исследование работы трехфазной цепи				
	при соединении «звездой» и «треугольни-				
	KOM».				
	3. Построение векторных диаграмм, вычис-				
	ление характеристик переменного тока.				
	Самостоятельная работа:		2	3	3
	1. Работа над конспектом лекции				
	2. Подготовка презентации: «Производство				
	переменного тока», «Применение схем со-				
	единения фаз «звездой» и «треугольни-				
	KOM».				
Раздел 2. Электротехнич					
Тема 2.1.	Содержание учебного материала:	OK 1 - 6	1	3	1
Электроизмерительные	Основные сведения об электрических	ПК 1.1 - 3.3			
приборы и	измерениях и электроизмерительных				
электрические	приборах. Виды и методы электрических				

измерения	измерений (прямые и косвенные). Погреш-			
нэмерения	ности измерений. Основные характеристи-			
	ки электроизмерительных приборов. Клас-			
	сификация электроизмерительных прибо-			
	ров.			
	Электромеханические измерительные			
	приборы. Понятие, основные конструктив-			
	ные элементы электромеханических изме-			
	рительных приборов. Устройство, назначе-			
	ние, основные достоинства и недостатки			
	приборов магнитоэлектрической, электро-			
	магнитной, электродинамической, электро-			
	статической, индукционной систем.			
	Электронные измерительные приборы.			
	Понятие об электронных измерительных			
	приборах. Устройство и принципы дей-			
	ствия аналоговых и цифровых электронных			
	приборов.			
	Электрические измерения электриче-			
	ских и неэлектрических величин. Изме-			
	рение электрических величин: тока, напря-			
	жения, электрической мощности и энергии,			
	сопротивлений, индуктивностей, емкостей.			
	Общие принципы измерения неэлектриче-			
	ских величин. Преобразователи неэлектри-			
	ческих величин.			
	Практические (лабораторные) работы:	3	3	2
	1. Проверка амперметра методом сравне-			
	ния.			
	2. Проверка вольтметра методом сравнения			
	3. Проверка ваттметра.			
	4. Чтение условных обозначений электро-			
	измерительных приборов.			
	Самостоятельная работа:	2	3	3
	1. Работа над конспектом лекции.			

	2. Подготовка доклада на тему: «Применение электроизмерительных приборов в профессии».				
Тема 2.2.	Содержание учебного материала:	OK 1 - 6	1	3	1
Тема 2.2. Трансформаторы	Содержание учебного материала: Основные сведения о трансформаторах. Понятие, типы, назначение, устройство, принцип работы. Анализ работы ненагруженного трансформатора. Приведение обмоток трансформатора. Анализ работы нагруженного трансформатора. Схемы замещения трансформатора. Опыты холостого хода и короткого замыкания. Коэффициент полезного действия трансформатора. Внешняя характеристика трансформатора. Трехфазные трансформаторы. Схемы соединения обмоток трехфазного трансформаторов. Трансформаторы специального назначения. Автотрансформаторы. Измерительные трансформаторы. Сварочные трансформаторы.	ОК 1 - 6 ПК 1.1 - 3.3	1	3	1
	торы.		3	3	2
	Практические (лабораторные) работы: 1. Определение коэффициента трансформации, регулирование напряжения. 2. Определение потерь короткого замыкания однофазного трансформатора. 3. Определение потерь холостого хода однофазного трансформатора.		3		2
	Самостоятельная работа: 1. Работа над конспектом лекции 2. Составление кроссвордов по теме: «Трансформаторы».		2	3	3
Тема 2.3. Электрические	Содержание учебного материала: Общие сведения об электрических ма-	ОК 1 - 6 ПК 1.1 - 3.3	1	3	1

машины	шинах. Электрические машины посто-			
	янного тока. Назначение, классификация,			
	типы электрических машин. Понятие,			
	классификация, принцип работы, характе-			
	ристики, пуск, торможение и остановка			
	двигателя постоянного тока и регулирова-			
	ние частоты вращения, принципиальные			
	схемы управления, обозначения на мон-			
	тажных и принципиальных схемах.			
	Асинхронные электрические машины.			
	Понятие, классификация, принцип работы,			
	характеристики, пуск и реверсирование			
	асинхронных двигателей, принципиальные			
	схемы управления, обозначения на мон-			
	тажных и принципиальных схемах.			
	Синхронные электрические машины.			
	Понятие, классификация, принцип работы,			
	характеристики, пуск, торможение и оста-			
	новка и синхронных двигателей, принципи-			
	альные схемы управления, обозначения на			
	монтажных и принципиальных схемах.			
	Практические (лабораторные) работы:	3	3	2
	1. Испытание, пуск, останов двигателя по-			
	стоянного тока с параллельным возбужде-			
	нием.			
	2. Испытание, пуск, останов генератора по-			
	стоянного тока.			
	3. Испытание, пуск, останов трехфазного			
	синхронного генератора.			
	4. Испытание, пуск, останов трехфазного			
	асинхронного двигателя.			
	Самостоятельная работа:	2	3	3
	1. Работа над конспектом лекции.			
	2. Подготовка докладов «Применение элек-			
	трических машин в бытовой технике».			

Тема 2.4.	Содержание учебного материала:	OK 1 - 6	1	1	1
Электрические	Электрические реле. Общие сведения ре-	ПК 1.1 - 3.3			
устройства, приборы,	лейной защите. Применение, устройство,				
аппараты	принцип работы, обозначения на схемах.				
_	Электрические аппараты. Общие сведе-				
	ния об электрических аппаратах. Примене-				
	ние, устройство, принцип работы, обозна-				
	чения на схемах.				
	Практические (лабораторные) работы:		3	3	2
	Решение задач по теме «Электрические				
	устройства, приборы, аппараты»				
	Самостоятельная работа:		2	3	3
	1. Работа над конспектом лекции.				
	2. Подготовка докладов на тему: «Приме-				
	нение автоматической аппаратуры до				
	1000B».				
Раздел 3. Электроснабжение потребителей					
Тема 3.1.	Содержание учебного материала:	OK 1 - 6	1	1	1
Производство,	Производство электроэнергии. Электро-	ПК 1.1 - 3.3			
передача и	энергетические системы. Электрические				
распределение	станции, Электрические сети и их основные				
электрической энергии	элементы. Подстанции. Электроснабжение				
	промышленных предприятий.				
	Потребление электрической энергии. Ви-				
	ды потребителей. Схемы электроснабже-				
	ния. Понятие об электрической установке.				
	Электрическое освещение и источники све-				
	та. Способы экономии электроэнергии.		1	1	2
	Практические (лабораторные) работы: 1. Чтение схем электроснабжения.		1	1	2
	1. Чтение схем электроснаожения. 2. Составление схем электроснабжения.				
	2. Составление схем электроснаожения. Самостоятельная работа:		1	1	3
	1. Работа над конспектом лекции.		1	1	3
Тема 3.2.		OK 1 - 7	1	2	1
Элементы техники	Содержание учебного материала: Меры безопасности при работе с элек-	ОК 1 - 7 ПК 1.1 - 3.3	1	4	1
элементы техники	меры оезопасности при работе с элек-	11N 1.1 - 3.3			

безопасности	трооборудованием. Электротравматизм и				
	его предотвращение.				
	Заземление электроустановок. Назначе-				
	ние, устройство и принцип работы заземле-				
	ния и зануления. ПТБ при работе с элек-				
	трооборудованием.				
	Практические (лабораторные) работы:		1	2	2
	1. Расчет заземляющих устройств.				
	2. Выполнение зануления электрооборудо-				
	вания.				
	Самостоятельная работа:		1	2	3
	1. Работа над конспектом лекции.				
	·	Всего:	45	60	

Для характеристики уровня освоения учебного материала используются следующие обозначения:

- 1. ознакомительный (узнавание ранее изученных объектов, свойств);
- 2. репродуктивный (выполнение деятельности по образцу, инструкции или под руководством)
- 3. продуктивный (планирование и самостоятельное выполнение деятельности, решение проблемных задач)

3. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Требования к минимальному материально-техническому обеспечению.

Реализация учебной дисциплины требует наличия учебного кабинета электротехники; лаборатории электротехники и электроники; читального зала с выходом в Интернет.

Оборудование учебного кабинета: рабочее место преподавателя; рабочие места по количеству обучающихся; доска; набор линеек, циркуль.

Технические средства обучения: компьютер, проектор, экран (стационарные или переносные).

3.2.Требования к педагогическим кадрам по реализации рабочей программы по специальности должны обеспечиваться педагогическими кадрами, имеющими высшее образование, соответствующее профилю преподаваемой дисциплины (модуля). Опыт деятельности в организациях соответствующей профессиональной сферы является обязательным для преподавателей, отвечающих за освоение обучающимся профессионального учебного цикла. Преподаватели получают дополнительное профессиональное образование по программам повышения квалификации, в том числе в форме стажировки в профессиональных организациях не реже 1 раза в 3 лет.

3.3. Требования к учебно-методической документации по дисциплине.

Учебно-методическая документация по дисциплине «Электротехника» включает: лекции; практические работы, тестовые задания, перечень вопросов к текущей и промежуточной аттестации.

3.2. Информационное обеспечение обучения

Перечень рекомендуемых учебных изданий, Интернет-ресурсов, дополнительной литературы

Основные источники:

- 1. Алиев И.И. Электротехника и электрооборудование [Электронный ресурс]: справочник. Учебное пособие для вузов/ Алиев И.И.— Электрон. текстовые данные.— Саратов: Вузовское образование, 2014.— 1199 с.— Режим доступа: http://www.iprbookshop.ru/9654.— ЭБС «IPRbooks».
- 2. Жабцев В.М. Главная книга электрика/В.М. Жабцев.-Москва: АСТ, 2015.-208с.
- 3.Трубникова В.Н. Электротехника и электроника. Часть 1. Электрические цепи [Электронный ресурс]: учебное пособие/ Трубникова В.Н.— Электрон. текстовые данные.— Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2014.— 137 с.— Режим доступа: http://www.iprbookshop.ru/33672.— ЭБС «IPRbooks».

Дополнительные источники:

- 1.Гордеев-Бургвиц М.А. Общая электротехника и электроника [Электронный ресурс]: учебное пособие/ Гордеев-Бургвиц М.А.— Электрон. текстовые данные.— М.: Московский государственный строительный университет, Ай Пи Эр Медиа, ЭБС АСВ, 2015.— 331 с.— Режим доступа: http://www.iprbookshop.ru/35441.— ЭБС «IPRbooks»
- 2.Нейман В.Ю. Электротехника и электроника. Интернет-тестирование базовых знаний. Часть 4. Трехфазные цепи и методы их анализа [Электронный ресурс]: учебное пособие/ Нейман В.Ю., Юрьева Н.А., Морозова Т.В.— Электрон. текстовые данные.— Новосибирск: Новосибирский государственный технический университет, 2013.— 100 с.— Режим доступа: http://www.iprbookshop.ru/45206.— ЭБС «IPRbooks»
- 3.Трубникова В.Н. Электротехника и электроника. Часть 1. Электрические цепи [Электронный ресурс]: учебное пособие/ Трубникова В.Н.— Электрон. текстовые данные.—

Оренбург: Оренбургский государственный университет, ЭБС ACB, 2014.— 137 с.— Режим доступа: http://www.iprbookshop.ru/33672.— ЭБС «IPRbooks»

4.Шпиганович А.Н. Методические указания к лабораторным работам по дисциплине "Электротехника и электроника" [Электронный ресурс]/ Шпиганович А.Н., Чуркина Е.В.— Электрон. текстовые данные.— Липецк: Липецкий государственный технический университет, ЭБС АСВ, 2013.— 34 с.— Режим доступа: http://www.iprbookshop.ru/22961.— ЭБС «IPRbooks»

Интернет-ресурсы:

- 1. Техническая литература. [электронный ресурс] tehlit.ru Режим доступа www.tehlit.ru
- 2. Портал нормативно-технической документации.- [электронный ресурс]-www.pntdoc.ru Режим доступа: http://www.pntdoc.ru

Журналы и словари:

1. Электрооборудование: эксплуатация и ремонт. ISSN: 2074-9635. Издательство: Панорама. http://www.iprbookshop.ru

Журнал для электриков и энергетиков. В каждом номере — обзоры, экспертиза и технические параметры новых типов оборудования. Рекомендации по эксплуатации, техническому обслуживанию. Мнения экспертов о новом высокоэффективном оборудовании. Ремонт; новые изоляционные материалы; диагностика и испытания. Мониторинг низковольтного и высоковольтного оборудования. Советы специалистов; вопросы энергосбережения; пошаговые инструкции. Новые типы вспомогательного электрооборудования: обзоры, технические параметры, экспертиза и мн. др. Издаётся при информационной поддержке ГТУ МЭИ и Российской Инженерной Академии.

- 2. ЭЛЕКТРО. Электротехника, электроэнергетика, электротехническая промышленность. ISSN:1995-5685. Издательство: Электрозавод. . http://www.iprbookshop.ru
- Научно-технический журнал «ЭЛЕКТРО. Электротехника, электроэнергетика, электротехническая промышленность» основан в 2000 году. В журнале систематически публикуются результаты научных исследований в области электроэнергетики, включая производство, передачу, распределение и потребление электроэнергии, а также вопросы трансформаторостроения и электроаппаратастроения, преобразовательной техники и кабельной техники, электропривода и систем автоматики, проводимых как в России, так и в странах СНГ. На страницах журнала публикуются основополагающие работы, представленные на ведущих международных конференциях. Журнал является уникальным изданием, где наряду с чисто теоретическими работами публикуются работы, в которых освещаются перспективы развития отрасли и электротехнической промышленности в условиях современной экономической ситуации. Журнал ЭЛЕКТРО включен в сформированный Высшей аттестационной комиссией Министерства образования и науки Российской Федерации Перечень ведущих рецензируемых научных журналов и изданий, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней кандидата и доктора наук.
- 3. Старкова Л.Е. Справочник цехового энергетика [Электронный ресурс]: учебно-практическое пособие/ Старкова Л.Е.— Электрон. текстовые данные.— М.: Инфра-Инженерия, 2013.— 352 с.— Режим доступа: http://www.iprbookshop.ru/13558.— ЭБС «IPRbooks».

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Текущий контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения практических занятий, а также выполнения обучающимися индивидуальных заданий.

Итоговой формой контроля является дифференцированный зачет.

Результаты обучения	Формы и методы контроля и оценки
· · · · · · · · · · · · · · · · · · ·	= =
(освоенные умения, усвоенные знания) В результате освоения дисциплины «Электротехника» обучающийся должен уметь: - контролировать выполнение заземления, зануления; - производить контроль параметров работы электрооборудования; - пускать и останавливать электродвигатели, установленные на эксплуатируемом оборудовании; - рассчитывать параметры, составлять и собирать схемы включения приборов при измерении различных электрических величин, электрических машин и механизмов; - снимать показания работы и пользоваться электрооборудованием с соблюдением норм техники безопасности и правил эксплуатации; - читать принципиальные, электрические	результатов обучения Индивидуальный опрос в ходе занятий, тестирование, решение задач, подготовка презентаций, кроссвордов, докладов.
и монтажные схемы; - проводить сращивание, спайку и изоляцию проводов и контролировать качество выполняемых работ;	
В результате освоения дисциплины «Электротехника» обучающийся должен знать: - основные понятия о постоянном и переменном электрическом токе, последовательное и параллельное соединение проводников и источников тока, единицы измерения силы тока, напряжения, мощности электрического тока, сопротивления проводников, электрических и магнитных полей; - сущность и методы измерений электрических величин, конструктивные и технические характеристики измерительных приборов; - типы и правила графического изображения и составления электрических схем; - условные обозначения электротехнических приборов и электрических машин;	Индивидуальный опрос в ходе занятий, тестирование, решение задач, подготовка презентаций, кроссвордов, докладов.

- основные элементы электрических сетей; принципы действия, устройство, основные характеристики электроизмерительных приборов, электрических машин, аппаратуры управления и защиты, схемы электроснабжения;
- двигатели постоянного и переменного тока, их устройство, принципы действия, правила пуска, остановки;
- способы экономии электроэнергии;
- правила сращивания, спайки и изоляции проводов:
- виды и свойства электротехнических материалов;
- правила техники безопасности при работе с электрическими приборами.

Уровень подготовки обучающихся по результатам текущего контроля успеваемости, дифференцированном зачете, по учебной дисциплине определяется оценками 5 «отлично», 4 «хорошо», 3 «удовлетворительно», 2 «неудовлетворительно»: оценка 5 «отлично» выставляется обучающемуся, обнаружившему всестороннее систематическое знание учебно-программного материала, умение свободно выполнять практические задания, максимально приближенные к будущей профессиональной деятельности в стандартных и нестандартных ситуациях, освоившему основную литературу и знакомому с дополнительной литературой, рекомендованной программой учебной дисциплины или профессионального модуля.

Оценка 5 «отлично» ставится обучающемуся, усвоившему взаимосвязь основных понятий учебной дисциплины в их значении для приобретаемой специальности, проявившим творческие способности в понимании, изложении и использовании учебнопрограммного материала.

Оценка 4 «хорошо» выставляется студенту, обнаружившему полное знание учебнопрограммного материала, успешно выполнившему практические задания, максимально приближенные к будущей профессиональной деятельности в стандартных ситуациях, усвоившему основную рекомендованную литературу. Оценка 4 «хорошо» выставляется обучающемуся, показавшему систематический характер знаний способному к их самостоятельному пополнению и обновлению в ходе дальнейшей учебы и профессиональной деятельности. Содержание и форма ответа имеют отдельные неточности.

Оценка 3 «удовлетворительно» выставляется обучающемуся, обнаружившему знание основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющемуся с выполнением заданий, предусмотренных программой. Оценка 3 «удовлетворительно» выставляется обучающемуся, обладающему необходимыми знаниями, но допустившему неточности в определении понятий, в применении знаний для решения профессиональных задач, в неумении обосновывать свои рассуждения;

Оценка 2 «неудовлетворительно» выставляется обучающемуся, обнаружившему знание основного учебно-программного материала в объеме, недостаточном для дальнейшей учебы и предстоящей работы по специальности, не справляющемуся самостоятельно с выполнением заданий, предусмотренных программой.

Разработчик:

ЧПОУ «СККИТ» преподаватель

РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ ВИДОВ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Методические рекомендации по подготовке докладов

Доклад – публичное сообщение, представляющее собой развернутое изложение на определенную тему

Различают следующие виды докладов: **научный** доклад и **учебный** доклад. Научные доклады готовятся научными работниками для представления своих результатов на научной конференции, научном семинаре и др. К учебным докладам относятся студенческие доклады и любые другие доклады, подготавливаемые обучающимися средних образовательных учреждений.

Для того, чтобы облегчить работу над докладом, предлагаем разбить процесс на несколько последовательных этапов. Надеемся, что знакомство с ними поможет вам овладеть необходимым инструментарием и разобраться в принципах построения письменной работы.

Этапы подготовки доклада

- 1. Подготовка и планирование.
- 2. Выбор и осознание темы доклада
- 3. Подбор источников и литературы.
- 4. Работа с выбранными источниками и литературой.
- 5. Систематизация и анализ материала.
- 6. Составление рабочего плана доклада.
- 7. Письменное изложение материала по параграфам.
- 8. Редактирование, переработка текста.
- 9. Оформление доклада.
- 10. Выступление с докладом.

При подготовке доклада рекомендуется придерживаться следующих правил:

Во-первых, необходимо четко соблюдать регламент.

Для того чтобы уложиться в отведенное время необходимо:

- а) тщательно отобрать факты и примеры, исключить из текста выступления все, не относящееся напрямую к теме;
- б) исключить все повторы;
- в) весь иллюстративный материал (графики, диаграммы, таблицы, схемы) должен быть подготовлен заранее;
- г) необходимо заранее проговорить вслух текст выступления, зафиксировав время и сделав поправку на волнение, которое неизбежно увеличивает время выступления перед аудиторией.

Во-вторых, доклад должен хорошо восприниматься на слух.

Это предполагает:

- а) краткость, т.е. исключение из текста слов и словосочетаний, не несущих смысловой нагрузки;
- б) смысловую точность, т.е. отсутствие возможности двоякого толкования тех или иных фраз;
- в) отказ от неоправданного использования иностранных слов и сложных грамматических конструкций.

Доклады оцениваются по следующим критериям:

- соблюдение требований к его оформлению;
- необходимость и достаточность информации для раскрытия темы;
- умение обучающегося свободно излагать основные идеи, отраженные в докладе;
- способность учащегося понять суть задаваемых ему вопросов и сформулировать точные ответы на них.

Методические рекомендации по подготовке мультимедийных презентаций

В оформлении презентаций выделяют два блока: оформление слайдов и представление информации на них. Для создания качественной презентации необходимо соблюдать ряд требований, предъявляемых к оформлению данных блоков.

В сценарий презентации входят:

- 1. Структура выступления;
- 2. Текст вступления и заключения;
- 3. Текст 3-4 модулей основной части;
- 4. Список ключевых высказываний;
- 5. Визуальные материалы с основными аргументами и тезисами.

Оформление слайдов

1. Стиль

- Соблюдайте единый стиль оформления.
- Избегайте стилей, которые будут отвлекать от самой презентации.
- Вспомогательная информация (управляющие кнопки) не должны преобладать над основной информацией

2. Использование цвета. Фон

- Для фона выбирайте более холодные тона (синий, серый, зеленый).
- На одном слайде рекомендуется использовать не более трех цветов: один для фона, один для заголовков, один для текста.
- Для фона и текста используйте контрастные тона.
- Обратите особое внимание на цвет гиперссылок (если они есть).

3. Содержание информации

- Используйте короткие слова и предложения.
- Минимизируйте количество предлогов, наречий, прилагательных.
- Заголовки должны привлекать внимание аудитории.

4. Расположение информации на странице

- Предпочтительно горизонтальное расположение информации.
- Наиболее важная информация должна располагаться в центре экрана.
- Если на слайде располагается картинка, то надпись оформляется под ней.

5. Шрифты

- Для заголовков не менее 24.
- Для информации не менее 18.
- Шрифта без засечек легче читать с большого расстояния.
- Нельзя смешивать разные типы шрифтов в одной презентации.
- Для выделения информации следует использовать жирный шрифт, курсив или подчеркивание.
- Нельзя злоупотреблять прописными буквами (они читаются хуже).

6. Способы выделения информации

Следует использовать:

- рамки, границы, заливку;
- разные цвета шрифтов, штриховку, стрелки;
- Рисунки, диаграммы, схемы для иллюстрации наиболее важных фактов.

7. Объем информации

- Не стоит заполнять один слайд слишком большим объемом информации: люди могут единовременно запомнить не более трех фактов, выводов, определений.
- Наибольшая эффективность достигается тогда, когда ключевые пункты отображаются по одному на каждом отдельном слайде.

8. Виды слайдов.

Для разнообразия следует использовать информацию:

- С текстом:
- С таблицами;
- С диаграммами.

9. Анимационные эффекты

- Не стоит злоупотреблять различными анимационными эффектами, они не должны отвлекать внимание от содержания информации на слайде.
- Используйте возможности компьютерной анимации для представления информации на слайде.

Методические рекомендации по составлению кроссворда

- 1. Кроссворд составляется в произвольной форме и должен состоять примерно из 20 терминов.
- 2. Вопросы формулируются четко и должны исключать двойное толкование.
- 3. Оформление:
- титульный лист (оформляется также как для реферата)
- два листа с ячейками кроссворда (один заполнен ответами)
- лист с вопросами кроссворда
- лист с ответами и список использованной литературы.

Интересные и оригинальные кроссворды могут быть рекомендованы к использованию в учебных целях для тестирования.

Критерии оценки кроссворда:

Работа выполнена на «отлично»: термины и определения написаны грамотно, допускается 1 ошибка; в содержании кроссворда используются термины по изучаемой теме; определение терминов не вызывает у обучающегося затруднений; определения терминов не повторяют дословно текст учебника или конспекта; кроссворд оформлен аккуратно и точно в соответствии с правилами оформления; объем отчета соответствует регламенту; кроссворд оформлен иллюстрациями; сетка кроссворда имеет заливку, красочно оформлен; при оформлении кроссворда использовано специальное программное обеспечение.

Работа выполнена на «хорошо»: содержание материала в таблице соответствует заданной теме, но есть недочеты и незначительные ошибки; ячейки таблицы заполнены материалом, подходящим по смыслу, но представляет собой пространные пояснения и многословный текст; в оформлении таблицы имеются незначительные недочеты и небольшая небрежность.

Работа выполнена на «удовлетворительно»: студент работу не выполнил в полном объеме; содержание ячеек таблицы не соответствует заданной теме; имеются не заполненные ячейки.

Методические рекомендации по подготовке конспектов

При подготовке конспекта рекомендуется придерживаться такой последовательности:

- 1.Прочтите текст.
- 2.Определите цель изучения темы (какие знания должны приобрести и какими умениями обладать).
- 3. Выделите основные положения.
- 4. Проанализируйте основные положения.
- 5.Сделайте выводы.
- 6.Составьте краткую запись.

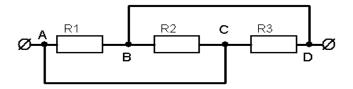
Критерии оценки самостоятельной работы студентов

Оценка «отлично» выставляется обучающемуся, за глубокое и полное овладение содержанием учебного материала, в котором студент легко ориентируется, владение понятийным аппаратом, за умение связывать теорию с практикой, решать практические задачи, высказывать и обосновывать свои суждения. Отличная оценка предполагает грамотное, логичное изложение ответа.

Оценка «хорошо» выставляется обучающемуся, если он полно освоил учебный материал, владеет понятийным аппаратом, ориентируется в изученном материале, осознанно применяет знания для решения практических задач, грамотно излагает ответ, но содержание и форма ответа имеют некоторые неточности.

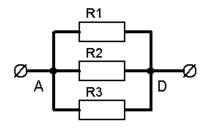
Оценка «удовлетворительно» выставляется обучающемуся, если он обнаруживает знание и понимание основных положений учебного материала,

но излагает его неполно, непоследовательно, допускает неточности в определений понятий, в применении знаний для решения практических задач, не умеет доказательно обосновать свои суждения.


Оценка «неудовлетворительно» выставляется обучающемуся, если он имеет разрозненные, бессистемные знания, не умеет выделять главное и второстепенное, допускает ошибки в определении понятий, искажает их смысл, беспорядочно и неуверенно излагает материал, не может применять знания для решения практических задач, за полное незнание и непонимание учебного материала или отказ отвечать на вопросы.

ПРИМЕРЫ ЗАДАЧ

Расчетные задачи по теме: «Электрические цепи постоянного тока»


Задача № 1

Найти сопротивление между точками A и D, приведенной на рисунке электрической схемы, если каждое из трех сопротивлений равно I Om. (Сопротивлением соединительных проводов пренебречь).

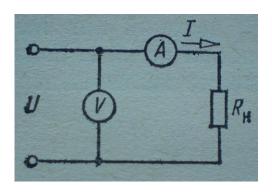
Решение:

Так как точки A и C, а также точки B и D соединены проводниками, сопротивление которых мы не учитываем, то схему представленную в условии задачи можно заменить эквивалентной схемой.

Из нее видно, что сопротивление между точками A и D можно вычислить по формуле для параллельного соединения проводников.

$$\frac{1}{R_{AD}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{n}{R};$$

Откуда


$$R_{AD} = \frac{R}{n} = \frac{1}{3} \approx 0.33 \, O_{M}.$$

Ответ: Сопротивление между точками A и D равно $R^{AD} \approx 0.33 \ Om.$

Залача № 2

Мощность, потребляемая нагрузочным сопротивлением RH = 9,9 Ом, измеряется с помощью вольтметра и амперметра. Вольтметр показывает 120B, амперметр 12A.

Считая, что показания приборов не содержат погрешностей (ошибки исключены с помощью поправок), подсчитать мощность, выделяющуюся в сопротивлении RH. Найти погрешность измерения мощности.

Решение:

Мощность, выделяющаяся в сопротивлении R_{H} , подсчитанная по показаниям приборов,

$$P_{u3} = UI = 120 \cdot 12 = 1440 \, Bm$$

Действительное значение этой мощности

$$P = I^2 \cdot R_{H} = 12^2 \cdot 9.9 = 1425.6 \, Bm.$$

Абсолютная погрешность измерения

$$\Delta P = P_{us} - P = 1440 - 1425, 6 = 14,4 \text{ Bm}.$$

Относительная погрешность измерения

$$\delta = \Delta P/P = 14,4/1425,6 = 0,0101 \approx 1\%.$$

Таким образом, проведя измерение абсолютно точными приборами, получаем значение мощности, на 1% отличающееся от действительного.

Такая погрешность, вызванная самой схемой измерения, называется систематической или методической.

Эта погрешность может быть найдена и непосредственно по известной формуле

$$\delta = RA/R_{\rm H}$$

Внутреннее сопротивление амперметра

$$RA = \frac{U}{I} - R_{H} = \frac{120}{12} - 9.9 = 0.1 \text{ Om}$$

Погрешность

$$\delta = RA / R_{H} = 0.1/9.9 = 0.0101.$$

Ответ: Погрешность измерения мощности $\delta = 0.0101 \approx 1\%$.

Залача № 3

Для изготовления обмотки нагревательного прибора при напряжении 220 B и токе 2 A применяется нихромовая лента. Определить длину ленты, приняв допустимую плот-

ность тока
$$\delta = 10^{-\frac{a}{MM^2}}$$
 :
$$\rho \mu uxpoma = 1, 1^{-\frac{o_M \bullet MM^2}{M}} - \text{удельное сопротивление нихрома}.$$

Решение:

$$S = \frac{I}{\mathcal{S}} = \frac{2}{10} = 0.2 \, \text{MM}^2.$$

Сопротивление обмотки

$$r = \frac{U}{I} = \frac{220}{2} = 110 \text{ om}$$

Определяем длину ленты

$$l = \frac{r \cdot S}{\rho} = \frac{110 \cdot 0.2}{1.1} = 20 \,\text{m}.$$

Ответ: Длина нихромовой ленты равна 20 м.

Задача №4

Определить сопротивление медного провода линии передачи сечением

$$S = 95$$
мм 2 , длиной $l = 120$ км при температурах $O~u~20~^{\circ}C$.

$$OM \bullet MM^2$$

 ρ ме $\partial u = 0.0175$ м - удельное сопротивление меди.

 α меди = $0.004^{-\frac{1}{0}}C$ - температурный коэффициент меди.

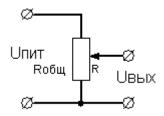
Решение:

$$r^{1} = \rho^{\bullet} \frac{l}{S};$$

так как ρ задано как раз для температуры 20° C, то, подставляя значения lи S, находим:

$$r_{1} = 0.0175 \bullet \frac{120000}{95} = 21.7 \text{ om.}$$

Сопротивление провода при θ ° C


$$r^2 = r^1 \cdot \alpha \Delta \Theta = 21,7 + 21,7 \cdot 0,004 (-20^{\circ} C) = 20 \text{ om}.$$

Ответ: Сопротивление медного провода линии передачи сечением S = 95мм 2 , длиной l = 120 км при температурах O и 20°C равно 20 ом.

Задача № 5

Определить напряжение на выходе делителя напряжения, который подключен к источнику питания 10 B в следующих случаях:

- а) напряжение снимается со всего делителя напряжения;
- б) напряжения снимается с половины витков делителя напряжения;
- в) напряжение снимается с 1/4 витков делителя напряжения.

Решение:

Напряжение на выходе делителя определяется по формуле:

$$U$$
вых $\equiv I \bullet R$

С другой стороны, ток переменного резистора находится из соотношения

$$I = rac{U_{num}}{R_{o 6 u \mu}}$$

Следовательно, отношение напряжения на выходе делителя и напряжения питания пропорционально отношению сопротивлений R и $R^{o \omega}$ T.e.

$$U_{^{\mathrm{GMX}}}=rac{R}{R_{^{\mathrm{OOU}}}}$$
 • $U_{^{\mathrm{Num}}}$

Отсюда находим искомые значения напряжений на выходе делителя

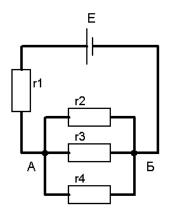
a)
$$U_{\text{GMX}} = \frac{1}{1} \bullet 10$$

6) $U_{\text{GMX}} = \frac{1}{2} \bullet 10$
8) $U_{\text{GMX}} = \frac{1}{4} \bullet 10$
10 = 2,5 B.

Ответ:

а) напряжение снимается со всего делителя напряжения

$$U^{\text{вых}} = 10 \, B;$$


б) напряжения снимается с половины витков делителя напряжения

U вых = 5 B:

в) напряжение снимается с 1/4 витков делителя напряжения $U^{\text{вых}} = 2.5 B$.

Задача № 6

Определять токи и напряжения в электрической цепи, изображенной на рисунке, при следующих ее данных: E = 2 в; r = 0.5 ом; r = 3.5 ом; r = 5 ом; r = 100 ом; r = 100 ом; r = 100 ом.

Решение:

Находим проводимость параллельно соединенных ветвей

$$gAB = g2 + g3 + g4 = \frac{1}{5} + \frac{1}{100} + \frac{1}{25} = 0.25 \frac{1}{OM}$$

откуда следует, что сопротивление этого участка

$$\frac{1}{r^{AB} = \varsigma_{AB}} = 4 \text{ om.}$$

общее сопротивление всей цепи

$$r = r^{O} + r^{1} + r^{AB} = 0.5 + 3.5 + 4 = 8 \text{ om}.$$

Ток в неразветвленной части цепи

$$\frac{E}{I_1} = \frac{2}{r} = \frac{2}{8} = 0.25 A$$

Напряжение между точками АБ

$$U^{AB} = I \cdot r^{AB} = 0.25 \cdot 4 = 1 B.$$

Токи в отдельных ветвях

$$I^{2} = \frac{U_{AB}}{r_{2}} = \frac{1}{5} = 0.2 A;$$

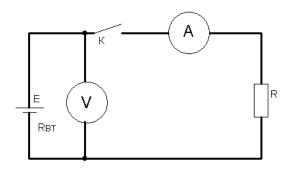
$$I^{3} = \frac{U_{AB}}{r_{3}} = \frac{1}{100} = 0.01 A;$$

$$I^{4} = \frac{U_{AB}}{r_{4}} = \frac{1}{25} = 0.04 A.$$

Ответ: токи и напряжения в электрической цепи равны:

 $U^{AB} = 1 B.$

 $I_1 = 0.25 A.$


 $I^2 = 0.2 A$;

 $I^3 = 0.01 A;$

I = 0.04 A.

Задача № 7

При разомкнутом ключе К показания вольтметра 2,1 B. Когда ключ замкнут, амперметр фиксирует ток 1A. Внешнее сопротивление цепи R=2 Oм. Определить ЭДС источника E, внутреннее сопротивление источника E0 и напряжение на зажимах источника E1.

Решение:

Когда цепь тока разорвана, вольтметр, подключенный к зажимам источника, практически фиксирует значение ЭДС.

Следовательно,

$$E = 2.1 B.$$

Для определения R^{sm} необходимо воспользоваться законом Ома для всей цепи:

$$I = \frac{E}{(R_{sm} + R)}$$

Откуда

$$R^{\, \text{\tiny GBM}} + R = \frac{E}{I} = \frac{2,1}{1} = 2,1 \, \text{\tiny OM}.$$

Так как известно, что внешнее сопротивление цепи R= 2 Ом, то внутренне сопротивление источника

$$R^{\,\mathrm{sm}} = 2, 1 - 2 = 0, 1 \, O_{\mathcal{M}}.$$

Напряжение на зажимах источника

$$U = E - R^{Bm} I$$

или

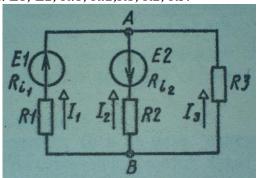
$$U = RI$$

Подставляя значения в приведенные выражения, получим

$$U = 2, 1 - 0, 1 \cdot 1 = 2 B;$$

 $U = 2 \cdot 1 = 2B;$

Применение формулы U = E - R вт I предпочтительней, так как подчеркивается тот факт, что напряжение на зажимах источника меньше ЭДС, причем с увеличением тока это напряжение уменьшается.


Ответ: E = 2, 1 B.

 $R^{\, Bm} = O_{\mathcal{M}}$.

U = 2 B;

Задача № 8

Для электрической цепи представленной на рисунке, методом двух узлов, определить токи во всех ее ветвях. Задачу решить в общем виде, учесть, что известны следующие параметры электрической цепи: E1, E2, Ri1, Ri2, R1, R2, R3.

Решение:

Решение данной задачи состоит в расчете сложной цепи переменного тока методом двух узлов. Для этого надо применительно к представленной на рисунке электрической схеме:

- 1) выбрать направления всех токов одинаковыми
- 2) найти проводимости всех ветвей, См,

$$GI = \frac{1}{R_1 + R_{i1}}$$

$$G2 = \frac{1}{R_2 + R_{i2}}$$

$$G3 = \frac{1}{R_3}$$

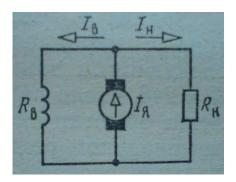
3) определить узловое напряжение *UAB*

$$UAB = \frac{E_{1}G_{1} - E_{2}G_{2}}{G_{1} + G_{2} + G_{3}}$$

 $(E_2G_2$ - со знаком "минус", так как E2 имеет противоположное I2направление);

4. определить токи в ветвях;

$$I1 = (E1 - UAB)G1$$


$$I2 = (-E2 - UAB)G2$$

$$I3 = (0 - UAB)G3$$

4. если в результате расчетов какой – либо ток будет получен со знаком «минус», значит, его действительное направление противоположно выбранному на схеме. Действительное направление необходимо показать пунктиром на схеме.

Задача № 9

Генератор постоянного тока с параллельным возбуждением работает на нагрузку, сопротивление которой RH = 5 Ом, сопротивление обмотки якоря Rя = 0,2 Ом, сопротивление обмотки возбуждения RB=230 Ом, напряжение на зажимах генератора U =230 В. Определить: а) ЭДС генератора; б) электромагнитную мощность; в) потери мощности в обмотках якоря и возбуждения?

Решение:

Токи нагрузки

$$I_H = U/R_H = 230/5 = 46A$$

возбуждения

$$I_{\mathcal{B}} = U/R_{\mathcal{B}} = 230/230 = 1A$$

Якоря

$$I_8 = I_H + I_6 = 46 + 1 = 47A$$

ЭДС генератора

$$E = U + I_{\mathcal{B}} \cdot R_{\mathcal{B}} = 230 + 47 \cdot 0.2 = 239.4 B$$

Электромагнитная мощность

$$P_9 = E \cdot I_8 = 239.4 \cdot 47 = 11251.8 \text{ Bm}.$$

Потери мощности в меди обмотки якоря

$$P_{MR} = IR^{2} \cdot R_{R} = 47^{2} \cdot 0.2 = 441.8 \ Bm$$

Потери мощности в меди обмотки возбуждения

$$P_{MB} = I_B^2 \cdot R_B = I^2 \cdot 230 = 230 \ Bm$$

Добавочные потери в соответствие ГОСТом составляют

1 % от полезной мощности генератора

$$P\partial o\delta = 0.01 \ UI_H = 0.01 \cdot 230 \cdot 46 = 105.8 \ Bm$$

Потери в щеточных контактах

$$P_{\kappa} = 2\Delta U I_{\Re} = 2 \cdot 0.5 \cdot 47 = 47 \ Bm$$

Ответ: ЭДС генератора E=239,4 B; электромагнитную мощность $P_{9}=11251,8$ Bm; потери мощности в обмотках якоря $P_{M9}=441,8$ Bm и возбуждения $P_{M6}=230$ Bm.

Задача №10

Чему равны одинаковые электрические токи, протекающие в двух параллельных проводах, которые расположены на расстоянии, a = 20 смдруг от друга, если на каждый метр провода действует сила F = 100 н/м?

$$\mu \circ = 4\pi \bullet 10^{-7} \frac{\mathcal{E}H}{\mathcal{M}}$$
 - магнитная постоянная. Для воздуха $\mu = 1$

Решение:

$$I^{2} = \frac{F_{0} 2\pi a}{\mu \mu_{0}} = \sqrt{\frac{100 \cdot 2\pi \cdot 0,2}{4\pi \cdot 10^{-7}}} = 10000A.$$

Ответ: Электрические токи, протекающие в двух параллельных проводах, которые расположены на расстоянии, a = 20 см равны 10000 A.

Задачи по теме: «Магнитные цепи»

Залача № 1.

- 1. Сформулируйте и запишите математическое выражение закона Ампера. Для чего применяется правило левой руки? Сформулируйте это правило.
- 2. Что называют магнитной цепью? Какие цепи называют разветвленными? Неразветвленными?

3. Решите задачу:

Магнитопровод неразветвленной однородной магнитной цепи составлен из 100 листов электротехнической стали толщиной 0,5 мм. Размеры магнитопровода указаны в мм. Определить намагничивающую силу F = Hl, при которой магнитный поток в магнитопроводе $\Phi = 3 \cdot 10^{-3}$ Вб.

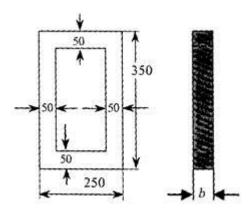


Рис. 2 – Эскиз магнитопровода к задаче 3 варианта 1.

Задача № 2.

- 1. Дайте понятие абсолютной магнитной проницаемости. Приведите её численное значение. Что понимают под относительной магнитной проницаемостью среды. На какие группы можно разделить все вещества, используя понятие относительной магнитной проницаемости.
- 2.Сформулируйте закон Ома для магнитной цепи. Для расчета, какого типа цепей он применяется.

3. Решите задачу:

Определить ток в катушке, имеющей 250 витков, и магнитную проницаемость сердечника, на котором расположена катушка, выполненном из литой стали, если магнитный поток, созданный током катушки в сердечнике, $\Phi = 8 \cdot 10^{-4}$ Вб. Размеры однородной магнитной цепи даны в мм.

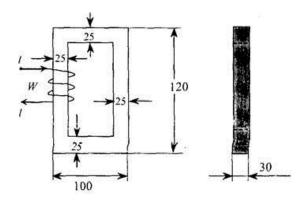
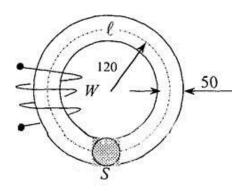


Рис. 3 – Эскиз магнитопровода к задаче 3 варианта 2.

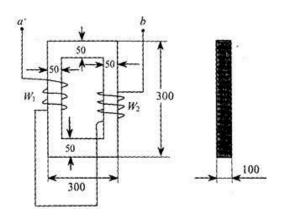

Задача № 3.

1. Что называют магнитным потоком? Назовите основную единицу измерения магнитного потока Φ .

2. Что понимают под магнитным сопротивлением? В каких единицах измеряется магнитное сопротивление? Почему в магнитных цепях целесообразно сокращать воздушные зазоры?

3. Решите задачу:

По катушке с числом витков W = 300 проходит ток 2 А. Катушка расположена на сердечнике из электротехнической стали, размеры которого даны в мм. Определить магнитный поток Φ в магнитопроводе однородной магнитной цепи.


Задача № 4.

1. Дайте определение вектора магнитной индукции B. Опишите способы определения направления вектора B. Назовите основную единицу измерения для вектора B.

2. Что называют магнитным напряжением? Намагничивающей силой? В каких единицах они измеряются. Сформулируйте закон полного тока.

3. Решить задачу:

Однородная магнитная цепь из листовой электротехнической стали имеет две обмотки $W_I = 200$ и $W_2 = 150$, подключенных согласно к зажимам a и b. Сопротивление обмоток соответственно RI = 0,52 Ом и R2 = 0,38 Ом. К зажимам a и b приложено напряжение U = 6 В. Определить магнитный поток в магнитной цепи, пренебрегая рассеянием. Размеры магнитопровода даны в мм. Расчет произвести по закону полного тока для магнитной цепи.

Частное профессиональное образовательное учреждение «СЕВЕРО-КАВКАЗСКИЙ КОЛЛЕДЖ ИННОВАЦИОННЫХ ТЕХНОЛОГИЙ»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДИСЦИПЛИНЫ «ЭЛЕКТРОТЕХНИКА»

13.01.10 ЭЛЕКТРОМОНТЕР ПО РЕМОНТУ И ОБСЛУЖИВАНИЮ ЭЛЕКТРООБОРУДОВАНИЯ (ПО ОТРАСЛЯМ)

Квалификация выпускника

ЭЛЕКТРОМОНТЕР ПО РЕМОНТУ И ОБСЛУЖИВАНИЮ ЭЛЕКТРООБОРУДОВАНИЯ (ПО ОТРАСЛЯМ)

ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

После освоения дисциплины «Электротехника» студент должен обладать следуюшими компетенциями:

- OК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- ОК 2. Организовывать собственную деятельность, исходя из цели и способов ее достижения, определенных руководителем.
- OК 3. Анализировать рабочую ситуацию, осуществлять текущий и итоговый контроль, оценку и коррекцию собственной деятельности, нести ответственность за результаты своей работы.
- ОК 4. Осуществлять поиск информации, необходимой для эффективного выполнения профессиональных задач.
- ОК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- OK 6. Работать в команде, эффективно общаться с коллегами, руководством, клиентами.
- ОК 7. Исполнять воинскую обязанность, в том числе с применением полученных профессиональных знаний (для юношей).
- ПК 1.1. Выполнять слесарную обработку, пригонку и пайку деталей и узлов различной сложности в процессе сборки.
 - ПК 1.2. Изготовлять приспособления для сборки и ремонта.
- ПК 1.3. Выявлять и устранять дефекты во время эксплуатации оборудования и при проверке его в процессе ремонта.
 - ПК 1.4. Составлять дефектные ведомости на ремонт электрооборудования.
- ПК 2.1. Принимать в эксплуатацию отремонтированное электрооборудование и включать его в работу.
- ПК 2.2. Производить испытания и пробный пуск машин под наблюдением инженерно-технического персонала.
- ПК 2.3. Настраивать и регулировать контрольно-измерительные приборы и инструменты.
 - ПК 3.1. Проводить плановые и внеочередные осмотры электрооборудования.
- ПК 3.2. Производить техническое обслуживание электрооборудования согласно технологическим картам.
- ПК 3.3. Выполнять замену электрооборудования, не подлежащего ремонту, в случае обнаружения его неисправностей.

В результате освоения дисциплины обучающийся должен:

Знать:

- основные понятия о постоянном и переменном электрическом токе, последовательное и параллельное соединение проводников и источников тока, единицы измерения силы тока, напряжения, мощности электрического тока, сопротивления проводников, электрических и магнитных полей;
- сущность и методы измерений электрических величин, конструктивные и технические характеристики измерительных приборов;
 - типы и правила графического изображения и составления электрических схем;
 - условные обозначения электротехнических приборов и электрических машин;
- основные элементы электрических сетей; принципы действия, устройство, основные характеристики электроизмерительных приборов, электрических машин, аппаратуры управления и защиты, схемы электроснабжения;
- двигатели постоянного и переменного тока, их устройство, принципы действия, правила пуска, остановки;
 - способы экономии электроэнергии;

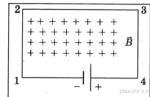
- правила сращивания, спайки и изоляции проводов;
- виды и свойства электротехнических материалов;
- правила техники безопасности при работе с электрическими приборами.

Уметь:

- контролировать выполнение заземления, зануления;
- производить контроль параметров работы электрооборудования;
- пускать и останавливать электродвигатели, установленные на эксплуатируемом оборудовании;
- рассчитывать параметры, составлять и собирать схемы включения приборов при измерении различных электрических величин, электрических машин и механизмов;
- снимать показания работы и пользоваться электрооборудованием с соблюдением норм техники безопасности и правил эксплуатации;
 - читать принципиальные, электрические и монтажные схемы;
- проводить сращивание, спайку и изоляцию проводов и контролировать качество выполняемых работ;

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ


Матрица учебных заданий

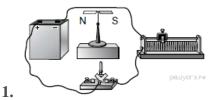

No	Наименование темы	Формируемые	Вид
		компетенции	контрольного
			задания
1	Раздел 1. Электрические и магнитные	ОК 1 - 7	Контрольная рабо-
	цепи	ПК 1.1 - 3.3	та № 1
2	Раздел 2. Электротехнические	ОК 1 - 6	Контрольная рабо-
	устройства	ПК 1.1 - 3.3	та № 2
3	Раздел 3. Электроснабжение потре-	ОК 1 - 7	Контрольная рабо-
	бителей	ПК 1.1 - 3.3	та № 3 (в виде те-
			ста)

Контрольная работа № 1

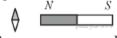
По разделу 1. Электрические и магнитные цепи

Вариант 1

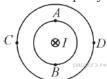
2. В какую сторону направлена сила, действующая со стороны магнитного поля на проводник 1—2?

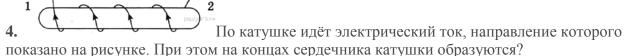


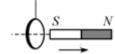
3. К магнитной стрелке медленно поднесли справа постоянный магнит, как показано на рисунке. Как повернётся магнитная стрелка?


4. × × × Как направлена сила, действующая на проводник с током?

5. 1 На рисунке показано, как установились магнитные стрелки, находящиеся рядом с магнитом. Укажите полюса стрелок.


Вариант 2


Линейный проводник закрепили над магнитной стрелкой и собрали электрическую цепь, представленную на рисунке. При замыкании ключа магнитная стрелка



2. К магнитной стрелке медленно поднесли справа постоянный магнит, как показано на рисунке. Как повернётся магнитная стрелка?

Вектор индукции магнитного поля, создаваемого током, направлен вверх в точке?

Контрольное время 20 минут.

Контрольная работа № 2

По разделу 2. Электротехнические устройства

Вариант 1

- 1. Измерение электрического тока и напряжения.
- 2. Принцип действия магнитоэлектрического измерительного механизма.
- 3. Задача: Определить ток, который будет поступать в электрическую лампочку, включенную под напряжение U=220B, если сопротивление лампочки равно R=440 Ом.

Вариант 2

- 1. Измерение электрического сопротивления и мощности.
- 2. Принцип действия электромагнитного измерительного механизма.
- 3. Задача: Определить, к какому напряжению нужно подключить электрическую лампочку, имеющую сопротивление R=60 Ом, чтобы через нее протекал ток I=2A

Контрольное время 20 минут.

Оценка 5 «отлично» ставится обучающемуся, усвоившему взаимосвязь основных понятий учебной дисциплины в их значении для приобретаемой специальности, проявившим творческие способности в понимании, изложении и использовании учебнопрограммного материала.

Оценка 4 «хорошо» выставляется студенту, обнаружившему полное знание учебнопрограммного материала, успешно выполнившему практические задания, максимально приближенные к будущей профессиональной деятельности в стандартных ситуациях, усвоившему основную рекомендованную литературу. Оценка 4 «хорошо» выставляется обучающемуся, показавшему систематический характер знаний способному к их самостоятельному пополнению и обновлению в ходе дальнейшей учебы и профессиональной деятельности. Содержание и форма ответа имеют отдельные неточности.

Оценка 3 «удовлетворительно» выставляется обучающемуся, обнаружившему знание основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющемуся с выполнением заданий, предусмотренных программой. Оценка 3 «удовлетворительно» выставляется обучающемуся, обладающему необходимыми знаниями, но допустившему неточности в определении понятий, в применении знаний для решения профессиональных задач, в неумении обосновывать свои рассуждения;

Оценка 2 «неудовлетворительно» выставляется обучающемуся, обнаружившему знание основного учебно-программного материала в объеме, недостаточном для дальнейшей учебы и предстоящей работы по специальности, не справляющемуся самостоятельно с выполнением заданий, предусмотренных программой.

Контрольная работа № 3 (в виде теста)

по разделу 3. Электроснабжение потребителей

Вариант 1

- 1. Комплексная отрасль хозяйства, которая включает в свой состав отрасль по производству электроэнергии и передачу ее до потребителя называется
- А. энергетика;
- В. электроника;
- С. электроэнергетика;
- D. электроснабжение.
- 2. КПД ГЭС составляет до
- A. 40%;
- B. 95%;
- C. 60%;
- D. 80%.
- 3. К системам электроснабжения не предъявляется следующее требование:
- А. надёжность системы и бесперебойность электроснабжения потребителей;
- В. качество электроэнергии на вводе к потребителю;
- С. межсистемный переток должен составлять не менее 80%;
- D. безопасность обслуживания элементов систем электроснабжения.
- 4. По надёжности электроснабжения системы электроснабжения бывают для
- А. обеспечения потребителей 1, 2, 3 категорий надёжности;
- В. обеспечения потребителей 1, 2, 3 категорий надёжности, обеспечения смешанных потребителей;
- С. обеспечения потребителей 2,3 категории надёжности и обеспечения смешанных потребителей;
- D. обеспечения потребителей 1 категорий надёжности и обеспечения смешанных потребителей.
- 5. Система показателей, характеризующая соответствие суммы значений нагрузки энергосистемы и потребленной резервной мощности величине располагаемой мощности энергосистемы называется
- А. дефицит мощности энергосистемы;
- В. дефицит электроэнергии энергосистемы;
- С. баланс мощности энергосистемы;
- D. баланс электроэнергии энергосистемы.
- 6. Основные виды режимов электроэнергетических систем:
- А. нормальный, послеаварийный и переходный;
- В. нормальный и переходный;
- С. послеаварийный и переходный;

- D. нормальный и послеаварийный.
- 7. Электрические станции с комбинированной выработкой электрической энергии и тепла называются
- А. ГЭС;
- В. ТЭС;
- С. ТЭЦ;
- D. ГРЭС.
- 8. Разность, усредненная за 10 мин. между фактическим значением основной частоты и номинальным её значением называется
- А. колебание частоты;
- В. отклонение частоты;
- С. отклонения напряжения;
- D. колебание напряжения.
- 9. Электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей называются
- А. электроприемники ІІ категории;
- В. электроприемники І категории;
- С. электроприемники III категории;
- D. электроприемники IV категории.
- 10. По конфигурации электрические сети различают:
- А. разомкнутые и замкнутые;
- В. разомкнутые, разомкнутые резервированные и замкнутые;
- С. разомкнутые резервированные и замкнутые;
- D. разомкнутые и разомкнутые резервированные.
- 11. Схема электроснабжения города состоит из следующих составных частей:
- А. электроснабжающая сеть города напряжением 35—220 кВ, питающая электрическая сеть 10(6) кВ, распределительная электрическая сеть 10(6) кВ и распределительная сеть 380 В;
- В. электроснабжающая сеть города напряжением 35—220 кВ, распределительная электрическая сеть 10(6) кВ и распределительная сеть 380 В;
- С. электроснабжающая сеть города напряжением 35—220 кВ, питающая электрическая сеть 10(6) кВ и распределительная сеть 380 В;
- D. электроснабжающая сеть города напряжением 35—220 кВ, питающая электрическая сеть 10(6) кВ и распределительная электрическая сеть 10(6) кВ.
- 12. Подстанцией называется
- А. электроустановка, служащая для преобразования электроэнергии и состоящая из трансформаторов, распределительных устройств, устройств управления, зашиты и измерения;

- В. электроустановка, служащая для преобразования и распределения электроэнергии и состоящая из трансформаторов и распределительных устройств;
- С. электроустановка, служащая для преобразования и распределения электроэнергии и состоящая из трансформаторов, устройств управления, зашиты и измерения;
- D. электроустановка, служащая для преобразования и распределения электроэнергии и состоящая из трансформаторов, распределительных устройств, устройств управления, зашиты и измерения.
- 13. Разность электроэнергии, отпущенной в электрическую сеть и полезно отпущенной потребителям называется
- А. технические потери электроэнергии;
- В. коммерческие потери электроэнергии;
- С. потери при выставлении счетов;
- D. абсолютные потери электроэнергии.
- 14. Формула коэффициента расчетной нагрузки:

- 15. Электрические сети и подстанции относятся к электроустановкам
- А. по передаче, преобразованию и распределению электроэнергии;
- В. по производству электроэнергии;
- С. по потреблению электроэнергии в производственных и бытовых нуждах;
- D. по передаче и распределению электроэнергии.

Вариант 2

- 1. К преимущества тепловых электростанций не относится
- А. относительно свободное размещение;
- В. способность вырабатывать электроэнергию без сезонных колебаний;
- с. низкий КПД;
- D. невысокая аварийность.
- 2. Системой электроснабжения называется
- А. система, состоящая из совокупности источников и систем преобразования, передачи и распределения электрической энергии;
- в. система, состоящая из совокупности систем преобразования, передачи и распределения электрической энергии;
- С. система, состоящая из совокупности систем преобразования и распределения электрической энергии;
- D. система, состоящая из совокупности источников и систем преобразования и передачи электрической энергии.
- 3. По конфигурации системы электроснабжения бывают:
- А. централизованные и децентрализованные;
- в. децентрализованные и комбинированные;
- С. централизованные, децентрализованные, комбинированные;
- D. централизованные и комбинированные.
- 4. Подстанция глубокого ввода
- А. служит для питания локального объекта;
- В. служит для питания мощного обособленного производства предприятия;
- С. находится в центре электрических нагрузок объекта;
- служит для питания нескольких потребителей (объектов).
- 5. Суммарная располагаемая мощность генераторов энергосистемы, находящихся в данный момент в работе называется
- А. межсистемный переток;
- В. включенная мощность энергосистемы;
- С. суммарная нагрузка энергосистемы;
- D. включенная мощность электростанции.
- 6. Режим энергосистемы, при котором происходят периодические изменения параметров без нарушения синхронизма называется
- А. асинхронный режим работы энергосистемы;
- В. режим качаний в энергосистеме;
- с. переходный режим работы энергосистемы;
- D. установившийся режим работы энергосистемы.
- 7. Станция, на которой тепловая энергия пара преобразуется в турбине в кинетическую энергию потока, передаваемую ротору турбины, называется

- А. ТЭС;
- в. ТЭЦ;
- с. ГЭС;
- D. ВЭС.
- 8. Режим работы, при котором ЭП работает при номинальной мощности в течение времени, когда его температура не успевает достичь установившегося значения называется
- А. продолжительный режим работы;
- в. кратковременный режим работы;
- С. повторно-кратковременный режим работы;
- D. продолжительно-кратковременный режим работы.
- 9. По роду тока различают сети:
- А. ЛЭП постоянного тока и ЛЭП переменного однофазного тока;
- в. ЛЭП переменного трехфазного тока;
- с. ЛЭП постоянного тока;
- р. ЛЭП постоянного тока и ЛЭП переменного трехфазного тока.
- 10. Сети, питающие потребителей по меньшей мере с двух сторон называются
- А. разомкнутые;
- В. замкнутые;
- С. разомкнутые резервированные;
- D. резервированные.
- 11. Кольцевая сеть 110 кВ и выше должна быть связана по сети внешнего электроснабжения не менее чем с
- А. тремя территориально удаленными, независимыми источниками питания через разные опорные подстанции;
- в. двумя территориально удаленными источниками питания через разные опорные подстанции;
- С. двумя территориально удаленными, независимыми источниками питания через разные опорные подстанции;
- тремя территориально удаленными источниками питания через разные опорные подстанции.
- 12. Подстанции, целиком состоящие из комплектных узлов, называются
- ΤΠ;
- в. КТП;
- с. РП;
- **D**. ΠΓВ.
- 13. Максимальная нагрузка это
- А. наибольшая из средних нагрузок за рассматриваемый промежуток времени;
- в. нагрузка, которая не изменяется в течение промежутка времени;

- с. постоянная, неизменная во времени нагрузка в течение рассматриваемого промежутка времени, которая вызывает такой же расход электроэнергии, что и реальная, изменяющаяся нагрузка за этот же промежуток времени;
- эквивалентная по эффекту нагрева проводника нагрузка простейшего графика.
- 14. Формула коэффициента использования:

- 15. По числу фаз системы электроснабжения бывают:
- А. одно-, трёх-, многофазные;
- В. двух-, трёх-, многофазные;
- С. одно-, двух-, трёх-, многофазные;
- D. трёх- и многофазные.

Эталоны ответов

B-1	В	11
B-2	6	A
1	A	11
C	6	C
1	В	12
C	7	D
2	C	12
D	7	В
2	В	13
A	8	D
3	В	13
C	8	A
3	В	14
C	9	D
4	A	14
В	9	C
4	D	15
D	10	A
5	В	15
C	10	C
5	В	

Критерии оценивания теста

отлично	Правильных ответов 15-14
хорошо	Правильных ответов 13-11
удовлетворительно	Правильных ответов 10-9
неудовлетворительно	Правильных ответов 8 и менее

ФОНД ОЦЕНОЧНЫХ СРЕДСТ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

ДФК, дифференцированный зачет 1 семестр (очная, очно-заочная форма обучения)

1-вариант

- 1. Что такое электрический ток?
- А. графическое изображение элементов.
- В. это устройство для измерения ЭДС.
- С. упорядоченное движение заряженных частиц в проводнике.
- D. беспорядочное движение частиц вещества.
- Е. совокупность устройств предназначенных для использования электрического сопротивления.
- 2. Устройство, состоящее из двух проводников любой формы, разделенных диэлектриком
- А. электреты
- В. источник
- С. резисторы
- D. реостаты
- Е. конденсатор
- 3. Закон Джоуля Ленца
- А. работа производимая источникам, равна произведению ЭДС источника на заряд, переносимый в цепи.
- В. определяет зависимость между ЭДС источника питания, с внутренним сопротивлением.
- С. пропорционален сопротивлению проводника в контуре алгебраической суммы.
- D. количество теплоты, выделяющейся в проводнике при прохождении по нему электрического тока, равно произведению квадрата силы тока на сопротивление проводника и время прохождения тока через проводник.
- Е. прямо пропорциональна напряжению на этом участке и обратно пропорциональна его сопротивлению.

Прибор

А. резистор

4.

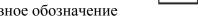
- В. конденсатор
- С. реостат
- D. потенциометр
- Е. амперметр
- 5. Определите сопротивление нити электрической лампы мощностью 100 Вт, если лампа рассчитана на напряжение 220 В.
- А. 570 Ом.
- В. 488 Ом.
- С. 523 Ом.
- D. 446 Ом.
- Е. 625 Ом.
- 6. Физическая величина, характеризующую быстроту совершения работы.
- А. работа
- В. напряжения

- С. мощность
- D. сопротивления
- Е. нет правильного ответа.
- 7. Сила тока в электрической цепи 2 А при напряжении на его концах 5 В. Найдите сопротивление проводника.
- А. 10 Ом
- В. 0,4 Ом
- С. 2,5 Ом
- D. 4 O_M
- Е. 0,2 Ом
- 8. Закон Ома для полной цепи:
- A. I = U/R
- B. U=U*I
- C. U=A/q
- D. $I = I_1 = I_2 = ... = I_n$
- E. I=E/(R+r)
- 9. Диэлектрики, длительное время сохраняющие поляризацию после устранения внешнего электрического поля.
- А. сегнетоэлектрики
- В. электреты
- С. потенциал
- D. пьезоэлектрический эффект
- Е. электрический емкость
- 10. Вещества, почти не проводящие электрический ток.
- А. диэлектрики
- В. электреты
- С. сегнетоэлектрики
- D. пьезоэлектрический эффект
- Е. диод
- 11. Какие из перечисленных ниже частиц имеют наименьший отрицательный заряд?
- А. электрон
- В. протон
- С. нейтрон
- D. антиэлектрон
- Е. нейтральный
- 12. Участок цепи это...?
- А. часть цепи между двумя узлами;
- В. замкнутая часть цепи;
- С. графическое изображение элементов;
- D. часть цепи между двумя точками;
- Е. элемент электрической цепи, предназначенный для использование электрического сопротивления.
- 13. В приборе для выжигания по дереву напряжение понижается с 220 В до 11 В. В паспорте трансформатора указано: «Потребляемая мощность 55 Вт, КПД 0,8». Определите силу тока, протекающего через первичную и вторичную обмотки трансформатора.

- A. $I_1 = 0.34 A$; $I_2 = 12 A$
- B. $I_1 = 4.4 A$; $I_2 = 1.4 A$
- C. $I_1 = 5.34 A$; $I_2 = 1 A$
- D. $I_1 = 0.25 A$; $I_2 = 4 A$
- E. $I_1 = 0.45 A$; $I_2 = 1.4 A$
- 14. Преобразуют энергию топлива в электрическую энергию.
- А. Атомные электростанции.
- В. Тепловые электростанции
- С. Механические электростанции
- D. Гидроэлектростанции
- Е. Ветроэлектростанции.
- 15. Реостат применяют для регулирования в цепи...
- А. напряжения
- В. силы тока
- С. напряжения и силы тока
- D. сопротивления
- Е. мошности
- 16. Устройство, состоящее из катушки и железного сердечника внутри ее.
- А. трансформатор
- В. батарея
- С. аккумулятор
- D. реостат
- Е. электромагнит
- 17. Диполь это
- А. два разноименных электрических заряда, расположенных на небольшом расстоянии друг от друга.
- В. абсолютная диэлектрическая проницаемость вакуума.
- С. величина, равная отношению заряда одной из обкладок конденсатора к напряжению между ними.
- D. выстраивание диполей вдоль силовых линий электрического поля.
- Е. устройство, состоящее из двух проводников любой формы, разделенных диэлектриком.
- 18. Найдите неверное соотношение:
- A. $1 O_M = 1 B / 1 A$
- B. 1 B = 1 Дж / 1 Кл
- C. 1 Kл = 1 A * 1 c
- D. $1 A = 1 O_M / 1 B$
- E. $1A = \pi / c$
- 19. При параллельном соединении конденсатор.....=const
- А. напряжение
- В. заряд
- С. ёмкость
- D. сопротивление
- Е. силы тока
- 20. Вращающаяся часть электрогенератора.
- А. статор

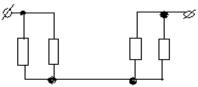
- В. ротор
- С. трансформатор
- D. коммутатор
- Е. катушка
- 21. В цепь с напряжением 250 В включили последовательно две лампы, рассчитанные на это же напряжение. Одна лампа мощностью 500 Вт, а другая мощностью 25 Вт. Определите сопротивление цепи.
- А. 2625 Ом.
- В. 2045 Ом.
- С. 260 Ом.
- D. 238 Om.
- Е. 450 Ом.
- 22. Трансформатор тока это...
- А. трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса.
- В. трансформатор, питающийся от источника напряжения.
- С. вариант трансформатора, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии.
- D. трансформатор, питающийся от источника тока.
- Е. трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками.
- 23. Какой величиной является магнитный поток Ф?
- А. скалярной
- В. векторной
- С. механический
- D. ответы A, B
- Е. перпендикулярный
- 24. Совокупность витков, образующих электрическую цепь, в которой суммируются ЭДС, наведённые в витках.
- А. магнитная система
- В. плоская магнитная система
- С. обмотка
- D. изоляция
- Е. нет правильного ответа
- 25. Земля и проводящие слои атмосферы образует своеобразный конденсатор. Наблюдениями установлено, что напряженность электрического поля Земли вблизи ее поверхности в среднем равна 100 В/м. Найдите электрический заряд, считая, что он равномерно распределен по всей земной поверхности.
- А. 4,2·**10**⁵ Кл
- В. 4,1·**10**⁵ Кл
- C. 4·**10**⁵ Кл
- D. 4,5·**10**⁵ Кл
- E. 4,6 ·**10**⁵ Кл

- 1. Что такое электрическая цепь?
- А. это устройство для измерения ЭДС.
- В. графическое изображение электрической цепи, показывающее порядок и характер соединение элементов.
- С. упорядоченное движение заряженных частиц в проводнике.
- D. совокупность устройств, предназначенных для прохождения электрического тока.
- Е. совокупность устройств предназначенных для использования электрического сопротивления.
- 2. ЭДС источника выражается формулой:
- A. I = Q/t
- B. E = Au/q
- C. W=q*E*d
- D. $\varphi = Ed$
- E. U=A/q
- 3. Впервые явления в электрических цепях глубоко и тщательно изучил:
- А. Майкл Фарадей
- В. Джемс Максвелл
- С. Георг Ом
- D. Михаил Ломоносов
- Е. Шарль Кулон



4. Прибор

- А. амперметр
- В. реостат
- С. резистор
- D. ключ
- Е. потенциометр
- 5. Ёмкость конденсатора C=10 мкФ, напряжение на обкладках U=220B. Определить заряд конденсатора.
- А. 2.2 Кл.
- В. 2200 Кл.
- С. 0,045 Кл.
- D. 450 Кл.
- E. $2.2 * 10^{-3} K_{7}$.
- 6. Это в простейшем случае реостаты, включаемые для регулирования напряжения.
- А. потенциометры
- В. резисторы
- С. реостаты
- D. ключ
- Е. счётчик
- 7. Часть цепи между двумя точками называется:
- А. контур
- В. участок цепи
- С. ветвь
- D. электрическая цепь


- Е. узел
- 8. Сопротивление последовательной цепи:

- A. $R = R_n$ B. $\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + \dots + \frac{1}{Rn}$ C. $\frac{U}{R} = \frac{U}{R1} + \frac{U}{R2} + \frac{U}{R3} + \dots + \frac{U}{Rn}$ D. $R = R_1 + R_2 + R_3 + \dots + R_n$
- E. $RI = R_1I + R_2I + R_3I + \cdots + R_nI$.
- 9. Сила тока в проводнике...
- А. прямо пропорционально напряжению на концах проводника
- В. прямо пропорционально напряжению на концах проводника и его сопротивлению
- С. обратно пропорционально напряжению на концах проводника
- D. обратно пропорционально напряжению на концах проводника и его сопротивлению
- Е. электрическим зарядом и поперечное сечение проводника
- 10. Какую энергию потребляет из сети электрическая лампа за 2 ч, если ее сопротивление 440 Ом, а напряжение сети 220 В?
- А. 340Bm · ч
- B. 240 Br. 4
- C. 220 Вт · ч
- D. 375 Br. 4
- E. 180 Br 4
- 11. $1 \text{ } \Gamma \text{BT} =$
- А. 1024 Вт
- В. 1000000000 Вт
- С. 1000000 Вт
- D. $10^{-3} Bm$
- E. 100 BT
- 12. Что такое потенциал точки?
- А. это разность потенциалов двух точек электрического поля.
- В. это абсолютная диэлектрическая проницаемость вакуума.
- С. называют величину, равная отношению заряда одной из обкладок конденсатора к напряжению между ними.
- D. называют устройство, состоящее из двух проводников любой формы, разделенных диэлектриком.
- Е. называют работу, по перемещению единичного заряда из точки поля в бесконечность.
- 13. Условное обозначение

- А. резистор
- В. предохранитель
- С. реостат
- D. кабель, провод, шина электрической цепи
- Е. приемник электрической энергии
- 14. Лампа накаливания с сопротивлением R= 440 Ом включена в сеть с напряжением U=110 В. Определить силу тока в лампе.
- A. 25 A

- B. 30 A
- C. 12 A
- D. 0,25 A
- E. 1 A
- 15. Какие носители заряда существуют?
- А. электроны
- В. положительные ионы
- С. отрицательные ионы
- D. нейтральные
- Е. все перечисленные

16.

Сколько в схеме узлов и ветвей?

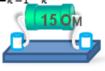
- А. узлов 4, ветвей 4;
- В. узлов 2, ветвей 4;
- С. узлов 3, ветвей 5;
- D. узлов 3, ветвей 4;
- Е. узлов 3, ветвей 2.
- 17. Величина, обратная сопротивлению
- А. проводимость
- В. удельное сопротивление
- С. период
- D. напряжение
- Е. потенциал
- 18. Ёмкость конденсатора C=10 м Φ ; заряд конденсатора Q= $4 \cdot 10^{-5}$ *Кл*. Определить напряжение на обкладках.
- A. 0,4 B;
- В. 4 мВ;
- C. 4·10⁻⁵ B;
- D. 4.10^{-7} B;
- E. 0,04 B.
- 19. Будет ли проходить в цепи постоянный ток, если вместо источника ЭДС включить заряженный конденсатор?
- А. не будет
- В. будет, но недолго
- С. будет
- D. A, B
- Е. все ответы правильно
- 20. В цепи питания нагревательного прибора, включенного под напряжение 220 В, сила тока 5 А. Определить мощность прибора.
- А. 25 Вт
- В. 4,4 Вт
- С. 2,1 кВт
- D. 1,1 кВт
- E. 44 B_T

- 21. Плотность электрического тока определяется по формуле:
- A. ...=q/t
- B. ...=I/S
- C. ...=dl/S
- D. ...=1/R
- E. ...=1/t
- 22. Определить количество теплоты, выделенное в нагревательном приборе в течение 0,5 ч, если он включен в сеть напряжением 110 В и имеет сопротивление 24 Ом.
- А. 130 000 Дж
- В. 650 000 Дж
- С. 907 500 Дж
- D. 235 кДж
- Е. 445 500 Дж
- 23. Магнитная система, в которой все стержни имеют одинаковую форму, конструкцию и размеры, а взаимное расположение любого стержня по отношению ко всем ярмам одинаково для всех стерней.
- А. симметричная магнитная система
- В. несимметричная магнитная система
- С. плоская магнитная система
- D. пространственная магнитная система
- Е. прямая магнитная система
- 24. Обеспечивает физическую защиту для активного компонента, а также представляет собой резервуар для масла.
- А. обмотка
- В. магнитная система
- С. автотрансформатор
- D. система охлаждения
- Е. бак
- 25. Трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса.
- А. трансформатор тока
- В. трансформатор напряжение
- С. автотрансформатор
- D. импульсный трансформатор
- Е. механический трансформатор.

Эталоны ответов

1-	2-
вариант	вариант
1. C	1. D
2. E	2.B
3. D	3.C
4. A	4.D
5. B	5.E

6. C	6.A
7. C 8. E 9. B	7.B
8. E	8.D
9. B	9.A
10. A	10.C
11. A	11.E
12. D	12.E
13. D	13.B
14. B	14.D
15. C	15.E
16. E	16.A
17. A	17.A
18. D	18.B
19. A	19.B
20. B	20.D
21. A	21.B
22. D	22.C
23. B	23.A
24. C	24.E
25. D	25.D


Критерии оценивания теста

отлично	Правильных ответов 25-18
хорошо	Правильных ответов 17-14
удовлетворительно	Правильных ответов 13-10
неудовлетворительно	Правильных ответов 9 и менее

Экзаменационный тест 2 семестр (очно-заочная форма обучения)

1-вариант

- 1. Что такое электрическое поле?
- А. упорядоченное движение электрических зарядов.
- В. особый вид материи, существующий вокруг любого электрического заряда.
- С. упорядоченное движение заряженных частиц в проводнике.
- D. беспорядочное движение частиц вещества.
- Е. взаимодействие электрических зарядов.
- 2. Внешняя часть цепи охватывает ...
- А. приемник соединительные провода
- В. только источник питанья
- С. приемник
- D. все элементы цепи
- Е. пускорегулирующую аппаратуру
- 3. Первый Закон Кирхгофа
- A. $\sum E = \sum IR$
- B. $\sum I = 0$
- C. $\sum_{k=0}^{m} I = 0$
- D. $\sum_{k=1}^{n} I_{k} = 0$
- $E. \sum_{k=1}^{n} E_k = 0$

Прибор

А. реостат

4.

- В. резистор
- С. батарея
- D. потенциометр
- Е. ключ
- 5. Конденсатор имеет электроемкость C=5 п Φ . Какой заряд находится на каждой из его обкладок, если разность потенциалов между ними U=1000 B?
- А. 5,9·**10**⁻⁷ Кл
- В. 5**·10**⁻⁷ Кл
- C. 4,5·**10**^{−6} Кл
- D. 4,7·**10⁻⁶** Кл
- Е. $5,7.10^{-8}$ Кл
- 6. Какая величина равна отношению электрического заряда, прошедшего через поперечное сечение проводника, ко времени его прохождения?
- А. сила тока
- В. напряжение
- С. сопротивление
- D. работа тока
- Е. энергия
- 7. Единица измерения потенциала точки электрического поля...
- А. Ватт

- В. Ампер
- С. Джоуль
- D. Вольт
- Е. Ом
- 8. Определить мощность приёмника, если сопротивление равно 100 Ом, а ток приёмника 5 мА
- A. 500 BT
- В. 20 Вт
- C. 0,5 BT
- D. 2500 BT
- Е. 0,0025 Вт
- 9. Частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически совпадают.
- А. вакуум
- В. вода
- С. плазма
- D. магнитный поток
- Е. однозначного ответа нет
- 10. Какое из утверждений вы считаете не правильным?
- А. Земной шар большой магнит.
- В. Невозможно получить магнит с одним полюсом.
- С. Магнит имеет две полюса: северный и южный, они различны по своим свойствам.
- D. Магнит направленное движение заряженных частиц.
- Е. Магнит, подвешенный на нити, располагается определенным образом в пространстве, указывая север и юг.
- 11. В 1820 г. Кто экспериментально обнаружил, что электрический ток связан с магнитным полем?
- А. Майкл Фарадей
- В. Ампер Андре
- С. Максвелл Джеймс
- D. Эрстед Ханс
- Е. Кулон Шарль
- 12. Ёмкость конденсатора C=10 м Φ ; заряд конденсатора Q= $4 \cdot 10^{-5}$ *Кл.* Определить напряжение на обкладках.
- A. 0,4 B;
- В. 4 мВ;
- C. $4 \cdot 10^{-5}$ B;
- D. 4·10⁻⁷ B;
- E. 0,04 B.
- 13. К магнитным материалам относятся
- А. алюминий
- В. железо
- С. медь
- D. кремний
- Е. все ответы правильно

- 14. Диэлектрики применяют для изготовления
- А. магнитопроводов
- В. обмоток катушек индуктивности
- С. корпусов бытовых приборов
- D. корпусов штепсельных вилок
- E. A, B.
- 15. К полупроводниковым материалам относятся:
- А. алюминий
- В. кремний
- С. железо
- D. нихром
- E. B, D.
- 16. Единицами измерения магнитной индукции являются
- А. Амперы
- В. Вольты
- С. Теслы
- D. Герцы
- Е. Фаза
- 17. Величина индуцированной ЭДС зависит от...
- А. силы тока
- В. напряжения
- С. скорости вращения витка в магнитном поле
- D. длины проводника и силы магнитного поля
- Е. ответы 1, 2
- 18. Выберите правильное утверждение:
- А. ток в замкнутой цепи прямо пропорционален электродвижущей силе и обратно пропорционален сопротивлению всей цепи.
- В. ток в замкнутой цепи прямо пропорционален сопротивлению всей цепи и обратно пропорционален электродвижущей силе.
- С. сопротивление в замкнутой цепи прямо пропорционально току всей цепи и обратно пропорционально электродвижущей силе.
- D. электродвижущая сила в замкнутой цепи прямо пропорциональна сопротивлению всей цепи и обратно пропорциональна току.
- Е. электродвижущая сила в замкнутой цепи прямо пропорциональна.
- 19. Если неоновая лампа мощностью 4,8 Вт рассчитана на напряжение 120 В, то потребляемый ток составляет:
- A. 576 A
- B. 115,2 A
- C. 124,8 A
- D. 0,04 A
- E. 54 A
- 20. Формула Мощность приёмника:
- A. N=EI
- B. N=U/I
- C. N=U/t
- D. P=A*t

- E. P=U*a/t
- 21. При параллельном соединении конденсатор=const
- А. напряжение
- В. заряд
- С. ёмкость
- D. индуктивность
- E. A, B.
- 22. Конденсатор имеет две пластины. Площадь каждой пластины составляет 15 см². Между пластинками помещен диэлектрик пропарафинированная бумага толщиной 0,02 см. Вычислить емкость этого конденсатора. (e=2,2)
- А. 1555 пФ
- В. 1222 пФ
- С. 1650 пФ
- D. 550 пФ
- Е. 650 пФ
- 23. Что такое Пик трансформатор
- А. трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса
- В. трансформатор, питающийся от источника напряжения.
- С. вариант трансформатора, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии.
- D. трансформатор, питающийся от источника тока.
- Е. трансформатор, преобразующий напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью.
- 24. Определить мощность приёмника, если сопротивление равно 110 Ом, а ток приёмника 5 мА.
- А. 0,0025 Вт
- В. 0,00275 Вт
- С. 20 Вт
- D. 0,5 B_T
- Е. 2500 Вт
- 25. Разделительный трансформатор это...
- А. трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса.
- В. трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса.
- С. трансформатор, питающийся от источника тока.
- D. трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками.
- Е. трансформатор, питающийся от источника напряжения.

2-вариант

- 1. Электрический ток в металлах это...
- А. беспорядочное движение заряженных частиц
- В. движение атомов и молекул.
- С. движение электронов.
- D. направленное движение свободных электронов.
- Е. движение ионов.
- 2. Что такое резистор?
- А. графическое изображение электрической цепи показывающие порядок и характер соединений элементов;
- В. совокупность устройств предназначенного для прохождение электрического тока обязательными элементами;
- С. порядочное движение заряженных частиц, замкнутом контуре, под действием электрического поля;
- D. элемент электрической цепи, предназначенный для использования его электрического сопротивления;
- Е. работа, совершаемая единицу времени или величина, численно равняя скорости преобразования энергий.
- 3. Электрический ток оказывает на проводник действие...
- А. тепловое
- В. радиоактивное
- С. магнитное
- D. физическое
- Е. все ответы правильны
- 4. Сопротивление тела человека электрическому току зависит от...
- А. роста человека
- В. массы человека
- С. силы тока
- D. физического состояния человека
- Е. не зависть

5. Прибор

- А. гальванометр
- В. ваттметр
- С. источник
- D. резистор
- Е. батарея
- 6. Закон Ома выражается формулой
- A. U = R/I
- B. U = I/R
- C. I = U/R
- D. R=I/U
- E. I=E/(R+r)

- 7. Определить количество теплоты, выделенное в нагревательном приборе в течение 0,5 ч, если он включен в сеть напряжением 110 В и имеет сопротивление 24 Ом.
 А. 350 000 Дж
 В. 245 550 Дж
 С. 907 500 Дж
 D. 45 кДж
 Е. 330 000 Дж
- 8. При последовательном соединении конденсатов=const
- А. напряжение
- В. заряд
- С. ёмкость
- D. индуктивность
- E. A, B.
- 9. Расстояние между пластинами плоского конденсатора увеличили в два раза. Электрическая ёмкость его...
- А. уменьшиться
- В. увеличится
- С. не изменится
- D. недостаточно данных
- Е. уменьшиться и увеличиться
- 10. Ёмкость конденсатора $C=10 \text{ м}\Phi$; заряд конденсатора $q=4*10^5 \text{ Кл. Определить напряжение на обкладках.}$
- A. 0,4 B;
- В. 4 мВ;
- C. 4.10^{-5} B;
- D. 4.10^{-7} B;
- E. 0,04 B.
- 11. За 2 ч при постоянном токе был перенесён заряд в 180 Кл. Определите силу тока.
- A. 180 A
- B. 90 A
- C. 360 A
- D. 0,025 A
- E. 1 A
- 12. Элемент электрической цепи, предназначенный для использования его электрического сопротивления называется
- А. клеммы
- В. ключ
- С. участок цепи
- D. резистор
- Е. реостат
- 13. Внешняя часть цепи охватывает ...
- А. приемник
- В. соединительные провода
- С. только источник питания
- D. пускорегулирующую аппаратуру
- Е. все элементы цепи

- 14. Сила индукционного тока зависит от чего?
- А. от скорости изменения магнитного поля
- В. от скорости вращение катушки
- С. от электромагнитного поля
- D. от числа ее витков
- E. A, D.
- 15. Алгебраическая сумма ЭДС в контуре равна алгебраической сумме падений напряжения на всех элементах данного контура:
- А. первый закон Ньютона
- В. первый закон Кирхгофа
- С. второй закон Кирхгофа
- D. закон Ома
- Е. С, Д.
- 16. Наименьшая сила тока, смертельно опасная для человека равна...
- A. 1 A
- B. 0,01 A
- C. 0,1 A
- D. 0,025 A
- E. 0,2 A
- 17. Диэлектрики, обладающие очень большой диэлектрической проницаемостью
- А. электреты
- В. пьезоэлектрический эффект
- С. электрон
- D. потенциал
- Е. сегнетоэлектрики
- 18. К батареи, ЭДС которой 4,8 В и внутреннее сопротивление 3,5 Ом, присоединена электрическая лампочка сопротивлением 12,5 Ом. Определите ток батареи.
- A. 0,5 A
- B. 0,8 A
- C. 0,3 A
- D. 1 A
- E. 7 A
- 19. Магнитные материалы применяют для изготовления
- А. радиотехнических элементов
- В. экранирования проводов
- С. обмоток электрических машин
- D. якорей электрических машин
- E. A, B
- 20. Определите коэффициент мощности двигателя, полное сопротивление обмоток которого 20 Ом, а активное сопротивление 19 Ом.
- A. 0,95
- B. 0,45
- C. 380
- D. 1,9
- E. 39

- 21. Кто ввел термин «электрон» и рассчитал его заряд?
- А. А. Беккерель
- В. Э. Резерфорд
- С. Н. Бор
- D. Д. Стоней
- Е. М. Планк
- 22. Если неоновая лампа мощностью 4,8 Вт рассчитана на напряжение 120 В, то потребляемый ток составляет:
- A. 124,8 A
- B. 115,2 A
- C. 0,04 A
- D. 0.5 A
- E. 25 A

- 23. Условное обозначение
- А. Амперметр
- В. Вольтметр
- С. Гальванометр
- D. Клеммы
- Е. Генератор
- 24. Силовой трансформатор это...
- А. трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса
- В. вариант трансформатора, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии.
- С. трансформатор, питающийся от источника напряжения.
- D. трансформатор, питающийся от источника тока.
- E. вариант трансформатора, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии.
- 25. В замкнутой цепи течет ток 1 А. внешнее сопротивление цепи 2 Ом. Определите внутреннее сопротивление источника, ЭДС которого составляет 2,1 В.
- А. 120 Ом
- B. 0.1 O_M
- С. 50 Ом
- D. 1,05 O_M
- Е. 4,1 Ом

Эталоны ответов

1-вариант	2-
	вариант
1.B	1.D
2.D	2.B
3.D	3.C,A
4.B	4.C
5.B	5.E
6.A	6.C
7.D	7.C
8.E	8.B
9.C	9.A
10.D	10.B
11.D	11.E
12.B	12.D
13.C	13.E
14.D	14.E
15.B	15.C
16.C	16.A
17.D	17.E
18.A	18.C
19.D	19.D
20.E	20.A
21.A	21.D
22.C	22.C
23.E	23.C
24.B	24.E
25.D	25.B

Критерии оценивания теста

отлично	Правильных ответов 25-18
хорошо	Правильных ответов 17-14
удовлетворительно	Правильных ответов 13-10
неудовлетворительно	Правильных ответов 9 и менее